

AN11538
SCTimer/PWM Cookbook

Rev. 5.0 — 21 March 2016 Application Note

Document information

Info Content

Keywords LPC81x, LPC82x, LPC11U6x, LPC11E6x LPC15xx, LPC54xxx,

LPC5411x, LPC18S/43Sxx, LPC18/43xx State Configurable Timer, SCT,

SCTimer/PWM

Abstract This application note is a collection of examples and usage notes for the

SCTimer/PWM block used in NXP microcontrollers

NXP Semiconductors AN11538
 SCTimer/PWM Cookbook

AN11538 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

Application Note Rev. 5.0 — 21 March 2016 2 of 61

Contact information

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

Revision history

Rev Date Description

5.0 20160303 Added support for LPC5411x.

4.0 20150707 Added 3 new examples for LPC81x (WS2812 LED Driver, PWM with 0-100% duty cycle
and Dual PWM with 0-100% duty cycle).

3.1 20150218 Added support for LPC18S/43Sxx.

3.0 20141104 Added support for LPC54xxx.

2.0 20140903 Updated with LPCOpen, added support for LPC82x.

1.0 20140821 Initial revision.

http://www.nxp.com/
mailto:salesaddresses@nxp.com

NXP Semiconductors AN11538
 SCTimer/PWM Cookbook

AN11538 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

Application Note Rev. 5.0 — 21 March 2016 3 of 61

1. Introduction

1.1 Overview

The State Configurable Timer (SCTimer/PWM) is a peripheral that is unique to NXP

Semiconductors. It can operate like most traditional timers, but also adds a state

machine to give it a higher degree of configurability and control. This allows the SCT to

be configured as multiple PWMs, a PWM with dead-time control, and a PWM with reset

capability, in addition to many other configurations that can not be duplicated with

traditional timers. Once the SCTimer/PWM has been configured, it can run autonomously

from the microcontroller core, unless the SCTimer/PWM interrupt has been enabled

which requires the core to service the interrupt.

Table 1 below gives an overview of the controller families that contain the SCTimer/PWM

block (one or more) and the way they are synthesized (showing the available number of

main resources like inputs, outputs, states, etc).

Table 1. SCTimer/PWM resources for each family

NXP part Inputs Outputs States Events Match/

capture

SCTIPU Dithering SCTPLL

LPC81x 4 4 2 6 5   

LPC82x 4 6 8 8 8   

LPC11U6x/E6x – SCT0/1 4 4 8 6 5   

LPC15xx – SCT0/1 8 10 16 16 16   

LPC15xx – SCT2/3 3 6 10 10 8   

LPC18/43xx (flashless) 8 16 32 16 16   

LPC18/43xx (flash) 8 16 32 16 16   

LPC18S/43Sxx (flashless) 8 16 32 16 16   

LPC18S/43Sxx (flash) 8 16 32 16 16   

LPC5410x 8 8 13 13 13   

LPC5411x 8 8 10 10 10   

Additional features of the SCTimer/PWM block are:

 Inputs and outputs can be routed to external pins and internally to other peripherals.

 If more SCTs available (like on LPC15xx) then SCTimer/PWM outputs are internally

connected to other SCTimer/PWM inputs.

 Each SCTimer/PWM can be used as one 32-bit counter or split into two 16-bit

counters.

 Clocked by bus clock, selected input or separate SCTPLL (on LPC15xx SCT0/1).

 Up counters or up-down counters.

 State variable allows sequencing across multiple counter cycles.

 Input Pre-processor Unit (on LPC15xx) for processing SCTimer/PWM inputs and

handling SCTimer/PWM aborts.

NXP Semiconductors AN11538
 SCTimer/PWM Cookbook

AN11538 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

Application Note Rev. 5.0 — 21 March 2016 4 of 61

 The following conditions define an event: a counter match condition, an input (or

output) condition, a combination of a match and/or and input/output condition in a

specified state, and the count direction.

 Events control outputs, interrupts, DMA requests and the SCTimer/PWM states.

Also:

 Match register 0 can be used as an automatic limit.

 In bi-directional mode, events can be enabled based on the count direction.

 Match events can be held until another qualifying event occurs.

 Selected events can limit, halt, start, or stop a counter.

This “cookbook” will give insight into the various ways that the SCTs can be used, but

this is in no way an exhaustive list of potential applications for this unique peripheral.

Each example shows the SCTimer/PWM’s used resources, the configuration code and in

addition to that, it configures, if available, any SCTimer/PWM inputs or outputs using the

Switch Matrix, the SCTimer/PWM Input multiplexers and the SCTimer/PWM Input

Processing Unit.

1.2 Terminology

The first time you look at the SCTimer/PWM, it may appear to be a very complex

peripheral, but you will see that it is actually not that difficult to use, even when not using

a design tool like Red State that is available in LPCXpresso IDE. It may be useful to

review some terminology which you will see in this document, as well as the NXP User

Manuals, that you may not encounter when dealing with other timers.

Limit – a limit is another name for a condition or event that causes the counter to be

cleared to zero when operated in unidirectional mode, or to change the direction of count

in bi-directional mode. For example, if a timer match occurs, this can (but does not have

to) limit the counter. You can think of a limit condition as a kind of timer reset. The

SCTimer/PWM limit register defines which events cause a limit condition.

NXP Semiconductors AN11538
 SCTimer/PWM Cookbook

AN11538 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

Application Note Rev. 5.0 — 21 March 2016 5 of 61

Fig 1. Timer limit in unidirectional and bidirectional counting mode

NXP Semiconductors AN11538
 SCTimer/PWM Cookbook

AN11538 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

Application Note Rev. 5.0 — 21 March 2016 6 of 61

Event – understanding events is critical to understanding the SCTimer/PWM. The

following conditions define possible events: a counter match condition, an input (or

output) condition, a combination of a match and/or an input/output condition in a

specified state, and the count direction. Events can control outputs, interrupts, DMA

requests and the SCTimer/PWM states. They can also cause timer limit, halt, start, or

stop conditions to occur.

STOP – when the SCTimer/PWM timer(s) have been stopped, the counter does not run,

but I/O events related to the counter can still occur. If an event occurs that is enabled in

the START register, the counter will resume running. The STOP condition is controlled

by the STOP_L and STOP_H bits in the SCTimer/PWM control register. The STOP bits

can be cleared by events or by software.

START – if the SCTimer/PWM has been stopped, it can be started again by an event.

The START register determines which events can start the timer.

HALT – a HALT is similar to STOP; however, an event cannot restart the timer.

Therefore, only software can be used to unhalt the timer. If you review the example code

that is included with this document, you will see that user software needs to clear the halt

condition in the control register to start the counting process.

Unified Timer – the SCTimer/PWM has one 32-bit counter. This counter can be

configured as one 32-bit counter (also called a “unified” counter), or it can be used as two

16-bit counters.

State – The state variable is the main feature that distinguishes the SCTimer/PWM from

other counter/timer/PWM blocks. Events can be made to occur only in certain states.

Events, in turn, can perform the following actions:

 set and clear outputs

 limit, stop, and start the counter

 cause interrupts

 modify the state variable

The value of a state variable is completely under the control of the application. If an

application does not use states, the value of the state variable remains zero, which is the

default value. A state variable can be used to track and control multiple cycles of the

associated counter in any desired operational sequence. The state variable is logically

associated with a state machine diagram which represents the SCTimer/PWM

configuration.

1.3 Target hardware

Most of the examples either use LPCXpresso V2 or LPCXpresso MAX board as

target/test hardware. For the schematics of these boards please refer to:

http://www.lpcware.com/LPCXpressoBoards

http://www.nxp.com/redirect/lpcware.com/LPCXpressoBoards

NXP Semiconductors AN11538
 SCTimer/PWM Cookbook

AN11538 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

Application Note Rev. 5.0 — 21 March 2016 7 of 61

2. Repetitive interrupt

2.1 Purpose

The SCTs can perform the same simple functions performed by a typical timer found in

most microcontrollers. The timer in SCTimer/PWM can be configured to operate as two

16-bit timers, or as a “unified” 32-bit timer. This example uses the unified 32-bit timer

mode to generate SCTimer/PWM interrupt every 10 milliseconds. The SCTimer/PWM

interrupt handler (in user code) will count the number of times it has been called, and will

toggle the GPIO (LED) every 20 interrupt cycles, or 200 milliseconds.

2.2 Configuration

This example (SCTx_repetitive_irq) uses Match register MATCH[0].U to trigger event0

which auto limits (resets) the counter and generates an interrupt (SCT_IRQ).

This example only uses 1 match and 1 event (no states, no inputs and no outputs).

void SCT_Init(void)
{
 LPC_SCT->CONFIG = (1 << 0) | (1 << 17); // unified 32-bit timer, auto limit

 LPC_SCT->MATCHREL[0].U = SystemCoreClock/100; // match 0 @ 100 Hz = 10 msec

 LPC_SCT->EVENT[0].STATE = 0xFFFFFFFF; // event 0 happens in all states
 LPC_SCT->EVENT[0].CTRL = (1 << 12); // match 0 condition only

 LPC_SCT->EVEN = (1 << 0); // event 0 generates an interrupt

 NVIC_EnableIRQ(SCT_IRQn); // enable SCTimer/PWM interrupt

 LPC_SCT->CTRL_U &= ~(1 << 2); // unhalt by clearing bit 2 of the CTRL
}

Fig 2. Code for SCT_repetitive_irq

NXP Semiconductors AN11538
 SCTimer/PWM Cookbook

AN11538 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

Application Note Rev. 5.0 — 21 March 2016 8 of 61

3. Blinky match

3.1 Purpose

In this example (SCTx_blinky_match), we use the unified 32-bit timer to toggle

SCTx_OUT0 which is connected to an output port of the controller (for example

connected to LED). The timer state will change every 100 milliseconds. Although it is not

necessary to use multiple states to create a toggling output on SCTx_OUT0, the example

illustrates the use of two states.

3.2 Configuration

 Match used: MATCH[0].U at 100 msec.

 Output used: SCTx_OUT0 connected to an LED that is illuminated when the output

is low (during state 0).

 Event used: Event 0 and 1.

 State used: State 0 and 1.

Fig 3 below illustrates what we would like to achieve with the SCTimer/PWM. The red

line shows the SCTimer/PWM counting up, until it reaches the match value, where it

limits back to 0. After each limit, the SCTimer/PWM output should toggle. The state

should be 0 when the output is low and it should be 1 when the output is high.

You can see that both event0 and event1 occur on a timer MATCH0. Event0 only

happens in state0 and changes to state1. Event1 only happens in state1 and changes

the state back to zero. The unified timer will limit (reset to zero) at both events, and the

output SCTx_OUT0 (SCTx used in the example below) will be set or reset.

Fig 3. Blinky match illustration

100 msec

SCT3_OUT0

STATE 0 STATE 1 STATE 0 STATE 1 STATE 0

MATCH 0 MATCH 0

SCT Timer

EVENT 0 EVENT 1

NXP Semiconductors AN11538
 SCTimer/PWM Cookbook

AN11538 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

Application Note Rev. 5.0 — 21 March 2016 9 of 61

3.3 Initialization code

void SCT_Init(void)
{
 LPC_SCT->CONFIG |= 1; // unified timer

 LPC_SCT->MATCHREL[0].U = (SystemCoreClock/10)-1; // match 0 @ 10 Hz = 100 msec

 LPC_SCT->EVENT[0].STATE = (1 << 0); // event 0 only happens in state 0
 LPC_SCT->EVENT[0].CTRL = (0 << 0) | // related to match 0
 (1 << 12) | // COMBMODE[13:12] = match condition only
 (1 << 14) | // STATELD[14] = STATEV is loaded into state
 (1 << 15); // STATEV[15] = 1 (new state is 1)

 LPC_SCT->EVENT[1].STATE = (1 << 1); // event 1 only happens in state 1
 LPC_SCT->EVENT[1].CTRL = (0 << 0) | // related to match 0
 (1 << 12) | // COMBMODE[13:12] = match condition only
 (1 << 14) | // STATELD[14] = STATEV is loaded into state
 (0 << 15); // STATEV[15] = 0 (new state is 0)

 LPC_SCT->OUT[0].SET = (1 << 0); // event 0 will set SCT_OUT0
 LPC_SCT->OUT[0].CLR = (1 << 1); // event 1 will clear SCT_OUT0
 LPC_SCT->LIMIT_L = 0x0003; // events 0 and 1 are used as counter limit

 LPC_SCT->CTRL_L &= ~(1 << 2); // unhalt by clearing bit 2 of CTRL register
}

Fig 4. Code for SCT_blinky_match

Remark: For LPC54xxx SCT_OUT[5] is used, since SCT_OUT[0] is not connected to

LED on LPC54xxx LPCXPresso V2 board.

NXP Semiconductors AN11538
 SCTimer/PWM Cookbook

AN11538 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

Application Note Rev. 5.0 — 21 March 2016 10 of 61

4. Match toggle

4.1 Purpose

The SCTimer/PWM has the capability to set or clear an output directly using the SET and

CLR registers, but it does not have a way to directly toggle the outputs. We are going to

look at how we can toggle an output using the Conflict Resolution register and

demonstrate how the previous example can be built using only one event using no

states. In addition this example (SCTx_match_toggle) will use only the lower 16-bit

counter, rather than using the 32-bit unified counter used in the previous examples. The

output should toggle SCTx_OUT0 every 100 milliseconds.

4.2 Configuration

 Match used: MATCH[0].L at 100 msec.

 Output used: SCTx_OUT0 toggling every time event 0 occurs.

 Event used: Event 0 (triggered by match 0 condition only).

 State used: none.

MATCH[0].L register is used to achieve a match every 100 msec. When a match occurs,

the timer auto limits (resets) and generates event 0. Event 0 toggles SCTx_Out0, using

the Conflict Resolution register.

The only issue with using a 12 MHz clock and a 16-bit counter is that the maximum delay

time is about 5.5 milliseconds. Therefore, we will need to use the SCTimer/PWM

prescaler. There is a separate 8-bit pre-divider for each of the 16-bit timers.

Fig 5. Match toggle illustration (SCT0 is used)

100 msec

SCT0_OUT0

MATCH 0 MATCH 0

SCT Timer

EVENT 0 EVENT 0

NXP Semiconductors AN11538
 SCTimer/PWM Cookbook

AN11538 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

Application Note Rev. 5.0 — 21 March 2016 11 of 61

4.3 Setting the SCTimer/PWM prescaler

The SCTimer/PWM prescaler is used to allow a 100 millisecond match interval with the

16-bit LOW counter. To keep this simple, we set the SCTimer/PWM input clock to 100

kHz by dividing the 12 MHz main clock by 120.

LPC_SCT->CTRL_L |= ((120 - 1) << 5); // set prescaler, SCTimer/PWM clock = 100 kHz

4.4 Initialization code

void SCT_Init(void)
{
 LPC_SCT->CONFIG |= (1 << 17); // two 16 bit timers, auto limit
 LPC_SCT->CTRL_L |= (119 << 5); // PRE_L[12:5] = 120-1 (SCTimer/PWM clock = 12MHz/120 = 100 kHz)

 LPC_SCT->MATCHREL[0].L = (100000/10)-1; // match 0 @ 10 Hz = 100 msec

 LPC_SCT->EVENT[0].STATE = 0xFFFF; // event 0 happens in all state
 LPC_SCT->EVENT[0].CTRL = (1 << 12); // match 0 condition only

 LPC_SCT->OUT[0].SET = (1 << 0); // event 0 will set SCTx_OUT0
 LPC_SCT->OUT[0].CLR = (1 << 0); // event 0 will clear SCTx_OUT0
 LPC_SCT->RES = (3 << 0); // output 0 toggles on conflict

 LPC_SCT->CTRL_L &= ~(1 << 2); // start timer

Fig 6. Code for SCT_match_toggle

Remark: For LPC54xxx SCT_OUT[5] is used, since SCT_OUT[0] is not connected to

LED on LPC54xxx LPCXPresso V2 board.

4.5 Using the conflict resolution register

As shown in Fig 6, the output pin 0 is both set and cleared by event 0. When an event

does both set and clear an output, the conflict resolution register is used to decide what

will happen for this conflict.

Fig 7. Conflict resolution register

In the SCTx_match_toggle example, the conflict resolution register uses the value of

0x03 which tells the SCTimer/PWM to toggle the output.

NXP Semiconductors AN11538
 SCTimer/PWM Cookbook

AN11538 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

Application Note Rev. 5.0 — 21 March 2016 12 of 61

5. Using the SCTPLL

5.1 Purpose

Like some other parts, the LPC15xx has a dedicated built-in PLL to create the clock for

SCT0 and/or SCT1. This example (SCT1_use_PLL) is using the SCTPLL to generate a

72 MHz input clock to SCT1, while the system clock is at 12 MHz derived from the IRC.

The SCTPLL input clock has a fixed connection to SCT1 input 7.

5.2 Configuration

The code is based on the previous example. It is using SCT1 and is tested on an

LPCXpresso board with an LPC1549 running at 12 MHz. It uses SCT1_IN7 to receive a

72 MHz clock from the SCTPLL and the unified timer and MATCH[0].U register to

achieve a match every 100 msec. When a match occurs, the timer auto limits (resets)

and generates event 0. Event 0 toggles SCT1 output 0 (connected to P0_24 green LED).

5.3 Set up the SCTPLL

Power up and enable the SCTimer/PWM PLL running at 72 MHz:

LPC_SYSCON->PDRUNCFG &= ~PDEN_SCT_PLL; // power-up SCTimer/PWM PLL
LPC_SYSCON->SCTPLLCLKSEL = 0; // select SCTimer/PWM PLL input = IRC
LPC_SYSCON->SCTPLLCTRL = (5 << 0) | // MSEL = 5 -> M = MSEL + 1 = 6
 (0 << 6); // PSEL = 0 -> P = 1
while (!(LPC_SYSCON->SCTPLLSTAT & 1)); // wait until SCTimer/PWM PLL locked

Use the global CONFIG register to use the SCTimer/PWM PLL at input 7:

LPC_SCT1->CONFIG |= (0x3 << 1) | // CLKMODE = SCTimer/PWM clock is input

selected by CLKSEL

 (0xF << 3); // CLKSEL = falling edge of input 7 (SCTimer/PWM PLL)

NXP Semiconductors AN11538
 SCTimer/PWM Cookbook

AN11538 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

Application Note Rev. 5.0 — 21 March 2016 13 of 61

5.4 Initialization code

void SCT1_Init(void)
{
 LPC_SYSCON->SYSAHBCLKCTRL1 |= EN1_SCT1; // enable the SCT1 clock

 LPC_SCT1->CONFIG |= (1 << 0) | // unified timer
 (0x3 << 1) | // SCTimer/PWM clock is input selected by CLKSEL
 (0xF << 3) | // falling edge of input 7 (SCTimer/PWM PLL)
 (1 << 17); // auto limit

 LPC_SCT1->MATCH[0].U = (72000000/10) -1; // match 0 @ 10 Hz = 100 msec
 LPC_SCT1->MATCHREL[0].U = (72000000/10) -1;

 LPC_SCT1->EVENT[0].STATE = 0xFFFFFFFF; // event 0 happens in all states
 LPC_SCT1->EVENT[0].CTRL = (1 << 12); // match 0 condition only

 LPC_SCT1->OUT[0].SET = (1 << 0); // event 0 will set SCT1_OUT0
 LPC_SCT1->OUT[0].CLR = (1 << 0); // event 0 will clear SCT1_OUT0
 LPC_SCT1->RES = (3 << 0); // output 0 toggles on conflict

 LPC_SCT1->CTRL_U &= ~(1 << 2); // start timer
}

Fig 8. PWM (using PLL) initialization code

NXP Semiconductors AN11538
 SCTimer/PWM Cookbook

AN11538 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

Application Note Rev. 5.0 — 21 March 2016 14 of 61

6. Simple PWM

6.1 Purpose

This example (SCTx_pwm) uses the low 16-bit SCTimer/PWM timer to generate a

100 kHz PWM signal at SCTx_OUT0. Two pushbuttons (SW1 and SW2/SW3 on the

LPCXpresso board) are used to decrease and increase the duty cycle of the PWM signal

by updating the MATCHRELOAD register. Since the LPC812 LPCXpresso board doesn’t

have pushbuttons on it, the trimmer R38 is used to decrease (anticlock-wise) and

increase (clock-wise) the duty cycle of the PWM signal. By connecting SCTx_OUT0 to a

LED, this will adjust the brightness of the LED.

6.2 Configuration

 Match used: Match 0 for PWM period and Match 1 for PWM duty cycle.

 Output used: SCTx_OUT0 for PWM output signal.

 Event used: Event 0 and Event 1.

 State used: none.

The SCTimer/PWM input clock is pre-scaled to 1 MHz. It uses MATCH[0].L = 10 (1 MHz /

100 kHz) to generate a 100 kHz timer match; this will auto limit (reset) the counter and

generate event 0. Event 0 will then set SCTimer/PWM output 0 to a logic high level. The

MATCH[0].L register defines the period length of the PWM signal. A second match

register MATCH[1].L is used to define the duty cycle of the signal. When match event 1 is

occurs, it will clear SCTimer/PWM output 0. Fig 9 shows the waveforms for this example.

Fig 9. PWM counter operation and output

The application code uses (one GPIO input connected to a trimmer R38 on LPC812

LPCXpresso or two GPIO inputs connected to SW1 and SW2/SW3 on other LPCXpresso

boards) to control the duty cycle of the PWM output signal. Every time SW1 goes high to

NXP Semiconductors AN11538
 SCTimer/PWM Cookbook

AN11538 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

Application Note Rev. 5.0 — 21 March 2016 15 of 61

low (falling edge) it increases the duty cycle (in 10 steps) intern decreases the LED

brightness. And every time SW2/SW3 goes high to low it decreases the duty cycle

(in 10 steps) intern increases the LED brightness.

Note: On LPC82x LPCXpresso board switch SW2 and red LED are connected on the

same port pin, hence one might see unwanted red LED flashing while decreasing the

duty cycle or increasing the LED brightness.

6.3 Configuration code

void SCT_Init(void)
{
 LPC_SCT->CONFIG |= (1 << 17); // two 16-bit timers, auto limit
 LPC_SCT->CTRL_L |= (12-1) << 5; // set prescaler, SCTimer/PWM clock = 1 MHz

 LPC_SCT->MATCHREL[0].L = 10-1; // match 0 @ 10/1MHz = 10 usec (100 kHz PWM freq)
 LPC_SCT->MATCHREL[1].L = 5; // match 1 used for duty cycle (in 10 steps)

 LPC_SCT->EVENT[0].STATE = 0xFFFFFFFF; // event 0 happens in all states
 LPC_SCT->EVENT[0].CTRL = (1 << 12); // match 0 condition only

 LPC_SCT->EVENT[1].STATE = 0xFFFFFFFF; // event 1 happens in all states
 LPC_SCT->EVENT[1].CTRL = (1 << 0) | (1 << 12); // match 1 condition only

 LPC_SCT->OUT[0].SET = (1 << 0); // event 0 will set SCTx_OUT0
 LPC_SCT->OUT[0].CLR = (1 << 1); // event 1 will clear SCTx_OUT0

 LPC_SCT->CTRL_L &= ~(1 << 2); // unhalt it by clearing bit 2 of CTRL reg
}

Fig 10. Simple PWM configuration code

Remark: For LPC54xxx SCT_OUT[5] is used, since SCT_OUT[0] is not connected to

LED on LPC54xxx LPCXPresso V2 board.

NXP Semiconductors AN11538
 SCTimer/PWM Cookbook

AN11538 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

Application Note Rev. 5.0 — 21 March 2016 16 of 61

7. Center aligned PWM

7.1 Purpose

The SCTimer/PWM has the capability to count up to a limit and then down to zero. In this

case you can use the Output Direction Control register to specify (for each output) the

impact of the counting direction on the meaning of set and clear operations on that

output.

This example (SCTx_pwm_center_aligned) is using that feature to generate a center

aligned PWM output. It demonstrates how the previous example can be built using just

one event. It again uses the low 16-bit SCTimer/PWM timer to generate a 100 kHz PWM

signal at SCTx_OUT0. Two pushbuttons (SW1 and SW2/SW3 on the LPCXpresso

board) are used to decrease and increase the duty cycle of the PWM signal by updating

the MATCHRELOAD register. Since the LPC812 LPCXpresso board doesn’t have

pushbuttons on it, the trimmer R38 is used to decrease (anticlock-wise) and increase

(clock-wise) the duty cycle of the PWM signal. By connecting SCTx_OUT0 to an LED,

this will adjust the brightness of the LED.

7.2 Configuration

The SCTimer/PWM input clock is now pre-scaled to 2 MHz. It uses MATCH[0].L = 10 to

generate a timer limit that changes the counting direction from up to down counting. So

the total PWM period is 20 clocks, 10 usec (100 kHz). A second match register

MATCH[1].L is used to define the duty cycle of the signal. When match event 1 occurs, it

will set SCTimer/PWM output 0 when up counting and clear (reverse) the output when

down counting. Fig 11 shows the waveforms for this example.

Fig 11. Center aligned PWM counter operation and output

The application code uses (one GPIO input connected to a trimmer R38 on LPC812

LPCXpresso or two GPIO inputs connected to SW1 and SW2/SW3 on the other

MATCH 1

MATCH 0

10 usec = 100 KHz

SCT3_OUT0

NXP Semiconductors AN11538
 SCTimer/PWM Cookbook

AN11538 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

Application Note Rev. 5.0 — 21 March 2016 17 of 61

LPCXpresso boards) to control the duty cycle of the PWM output signal. Every time SW1

goes high to low (falling edge) it increases the duty cycle (in 10 steps) intern decreases

the LED brightness. And every time SW2/SW3 goes high to low it decreases the duty

cycle (in 10 steps) intern increases the LED brightness.

7.3 Configuration code

void SCT_Init(void)
{
 LPC_SCT->CONFIG |= (1 << 17); // two 16-bit timers, auto limit at match 0
 LPC_SCT->CTRL_L |= (1 << 4) | (6-1) << 5; // BIDIR mode, prescaler = 6, SCTimer/PWM clock = 2
MHz

 LPC_SCT->MATCHREL[0].L = 10-1; // match 0 @ 10/2MHz = 5 usec (100 kHz PWM freq)
 LPC_SCT->MATCHREL[1].L = 5; // match 1 used for duty cycle (in 10 steps)

 LPC_SCT->EVENT[0].STATE = 0xFFFFFFFF; // event 0 happens in all states
 LPC_SCT->EVENT[0].CTRL = (1 << 0) | (1 << 12); // match 1 condition only

 LPC_SCT->OUT[0].SET = (1 << 0); // event 0 will set SCTx_OUT0
 LPC_SCT->OUTPUTDIRCTRL = (0x1 << 0); // reverse output 0 set when down counting

 LPC_SCT->CTRL_L &= ~(1 << 2); // unhalt it by clearing bit 2 of CTRL reg
}

Fig 12. Center aligned PWM initialization code

Remark: For LPC54xxx SCT_OUT[4] is used, since SCT_OUT[0] is not connected to

LED on LPC54xxx LPCXPresso V2 board.

NXP Semiconductors AN11538
 SCTimer/PWM Cookbook

AN11538 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

Application Note Rev. 5.0 — 21 March 2016 18 of 61

7.4 Using bidirectional output control

In Fig 11, you will see that the timer is counting up and down. Output pin 0 must be set at

MATCH1 during up counting, but must be reset at same match and event during down

counting. This can be accomplished using the bidirectional output control register.

Fig 13. Conflict resolution register

In this example the OUTPUTDIRCTRL register uses the value of 0x1 which tells the

SCTimer/PWM to reverse output 0 set and clear when counting down.

NXP Semiconductors AN11538
 SCTimer/PWM Cookbook

AN11538 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

Application Note Rev. 5.0 — 21 March 2016 19 of 61

8. Two-channel PWM

8.1 Purpose

This example (SCT_pwm_2ch) shows the generation of two PWM signals with different

duty cycles. It uses the unified 32-bit timer mode. A GPIO input assigned to

SCTimer/PWM input 0 (SCT_IN0) selects which of the output signals is active. A trimmer

(R38) on LPC812 LPCXpresso board or switch SW1 on other LPCXpresso boards is

used to select between the green and red/blue flashing LEDs. While in some hardware

boards (like LPC11U6x LPCXpresso) wherein GPIO (SW1) input can’t be used for

SCT_IN0, the output signal activation (red/blue and green LEDs flashing is time

multiplexed). Initially red/blue LED flashes for few seconds and then the green.

This example is initially built using the graphical Red State tool, (see Fig 14). It is using

the ALWAYS state (U_ALWAYS for unified counter and L_ALWAYS, H_ALWAYS for 16-

bit implementations). The ALWAYS state is not included as one of the states by the

SCTimer/PWM, so you still have all states available for each split timer. ALWAYS is a

condition that can occur in any state.

Auto-limit is selected in the SCTimer/PWM configuration register to allow match register

0 to cause a limit condition. The green LED flashes with a short duty cycle, while the

red/blue LED flashes with a long duty cycle.

8.2 Configuration

 Input(s) used: SCT_IN0 (SW1 or R38).

 Output(s) used: SCTx_OUT0 (green LED) and SCTx_OUT1 (red/blue LED).

 Match used: Match 0 to 4.

 Event used: Event 0 to 5.

 State used: State 0 and 1.

8.3 Red State diagram

Fig 14. Red State diagram for SCT_pwm_2ch

NXP Semiconductors AN11538
 SCTimer/PWM Cookbook

AN11538 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

Application Note Rev. 5.0 — 21 March 2016 20 of 61

8.4 Initialization code

See Fig 15. This code was initially generated by the Red State tool and afterwards

cleaned up and restructured.

void SCT_Init(void)
{
 LPC_SCT->CONFIG |= (1 << 0) | (1 << 17); // unified, auto limit

 LPC_SCT->MATCHREL[0].U = delay; // match_cycle
 LPC_SCT->MATCHREL[1].U = match_green_OFF; // match_green_OFF
 LPC_SCT->MATCHREL[2].U = match_green_ON; // match_green_ON
 LPC_SCT->MATCHREL[3].U = match_red_OFF; // match_red_OFF
 LPC_SCT->MATCHREL[4].U = match_red_ON; // match_red_ON

 LPC_SCT->EVENT[0].STATE = (1 << 0); // event 0 happens in state 0 (U_ENTRY)
 LPC_SCT->EVENT[0].CTRL = (0 << 0) | // related to match_cycle
 (0 << 10) | // IN_0 low
 (3 << 12) | // match AND IO condition
 (1 << 14) | // STATEV is loaded into state
 (1 << 15); // new state is 1

 LPC_SCT->EVENT[1].STATE = (1 << 0); // event 1 happens in state 0 (U_ENTRY)
 LPC_SCT->EVENT[1].CTRL = (3 << 0) | (1 << 12); // match_red_OFF only condition

 LPC_SCT->EVENT[2].STATE = (1 << 0); // event 2 happens in state 0 (U_ENTRY)
 LPC_SCT->EVENT[2].CTRL = (4 << 0) | (1 << 12); // match_red_ON only condition

 LPC_SCT->EVENT[3].STATE = (1 << 1); // event 3 happens in state 1
 LPC_SCT->EVENT[3].CTRL = (0 << 0) | // related to match_cycle
 (3 << 10) | // IN_0 high
 (3 << 12) | // match AND IO condition
 (1 << 14) | // STATEV is loaded into state
 (0 << 15); // new state is 0

 LPC_SCT->EVENT[4].STATE = (1 << 1); // event 4 happens in state 1
 LPC_SCT->EVENT[4].CTRL = (2 << 0) | (1 << 12); // match_green_ON only condition

 LPC_SCT->EVENT[5].STATE = (1 << 1); // event 5 happens in state 1
 LPC_SCT->EVENT[5].CTRL = (1 << 0) | (1 << 12); // match_green_OFF only condition

 LPC_SCT->OUT[0].SET = (1 << 0) | (1 << 3) | (1 << 5); // event 0, 3 and 5 set OUT0 (green LED)
 LPC_SCT->OUT[0].CLR = (1 << 4); // event 4 clear OUT0 (green LED)
 LPC_SCT->OUT[1].SET = (1 << 0) | (1 << 1) | (1 << 3); // event 0, 1 and 3 set OUT1 (red LED)
 LPC_SCT->OUT[1].CLR = (1 << 2); // event 2 clear OUT1 (red LED)
 LPC_SCT->OUTPUT |= 3; // default set OUT0 and OUT1

 LPC_SCT->CTRL_U &= ~(1 << 2); // start timer
}

Fig 15. Cleaned up version of code generated by Red State tool

Remark: For LPC54xxx SCT_OUT[4] and SCT_OUT[5] are used, since SCT_OUT[0]

and SCT_OUT[1] are not connected to LEDs on LPC54xxx LPCXPresso V2 board.

NXP Semiconductors AN11538
 SCTimer/PWM Cookbook

AN11538 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

Application Note Rev. 5.0 — 21 March 2016 21 of 61

9. PWM with deadtime

9.1 Purpose

This example (SCTx_pwm_deadtime) demonstrates a two-channel double-edge

controlled PWM generation, intended for use as a complementary PWM pair with dead-

time control. It uses the split 16-bit timer mode (low counter). The high counter could be

used to generate another complementary PWM pair with dead-time control, possibly with

a phase shift relative to the first pair, or for another purpose. An Abort input has also

been implemented on SCT_IN0 (the LPC15xx example uses the SCTimer/PWM Input

Processing Unit). The Abort input drives the outputs to their off states (Out0 = HIGH,

Out1 = LOW).

When the SCTimer/PWM detects a falling edge on the ABORT pin (SCT_IN0), it will call

the SCTimer/PWM interrupt that resets the counter (see SCT_IRQHandler in main.c),

and clears the STOP condition. An ABORT is generated by either by a GPIO pin that is

connected to SW1 on some LPCXpresso boards (LPC15xx) or internally when the board

hardware doesn’t support it.

9.2 Configuration

 Input(s) used: SCT_IN0 used as ABORT (from the SCTIPU in case of the LPC15xx).

 Output(s) used: SCT_OUT0 (PWM1 blue LED) and SCT_OUT1 (PWM2 red/blue

LED).

 Match used: Match 0 to 2.

 Event used: Event 0 to 3.

 State used: none.

NXP Semiconductors AN11538
 SCTimer/PWM Cookbook

AN11538 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

Application Note Rev. 5.0 — 21 March 2016 22 of 61

Fig 16. PWM with dead-time using bidirectional counter

9.3 LPC15xx input processing unit

To configure P1_9 as an ABORT input to SCT1_IN0 we use the code below. Note that by

using the Switch Matrix any GPIO port pin can be assigned as an ABORT pin.

LPC_SWM->PINASSIGN10 |= 0x0000FF00; // ASSIGN10(15:8) = FF
LPC_SWM->PINASSIGN10 &= 0xFFFF29FF; // P1.9 (SW2) = SCT_ABORT0
LPC_SCT_IPU->ABORT[1].ENABLE = 1; // enable SCT_ABORT0 from SWM
LPC_PMUX->SCT1_P_MUX0 = 17; // SCT1_IN0 = SCTIPU_ABORT = P1.9 (SW2)

9.4 Initialization code

Fig 17 shows the SCTimer/PWM initialization code using no states, four events and three

match / match reload registers.

Remark: For LPC54xxx SCT_OUT[4] and SCT_OUT[5] are used, since SCT_OUT[0]

and SCT_OUT[1] are not connected to LEDs on LPC54xxx LPCXPresso V2 board.

NXP Semiconductors AN11538
 SCTimer/PWM Cookbook

AN11538 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

Application Note Rev. 5.0 — 21 March 2016 23 of 61

#define DC1 (130) // duty cycle 1
#define DC2 (135) // duty cycle 2
#define hperiod (180)

void SCT_Init(void)
{
 LPC_SCT->CONFIG |= (1 << 17); // split timers, auto limit
 LPC_SCT->CTRL_L |= (1 << 4); // configure SCT1 as BIDIR

 LPC_SCT->MATCH[0].L = hperiod; // match on (half) PWM period
 LPC_SCT->MATCHREL[0].L = hperiod;
 LPC_SCT->MATCH[1].L = DC1; // match on duty cycle 1
 LPC_SCT->MATCHREL[1].L = DC1;
 LPC_SCT->MATCH[2].L = DC2; // match on duty cycle 2
 LPC_SCT->MATCHREL[2].L = DC2;

 LPC_SCT->EVENT[0].STATE = 0xFFFFFFFF; // event 0 happens in all states
 LPC_SCT->EVENT[0].CTRL = (2 << 10) | (2 << 12); // IN_0 falling edge only condition

 LPC_SCT->EVENT[1].STATE = 0xFFFFFFFF; // event 1 happens in all states
 LPC_SCT->EVENT[1].CTRL = (1 << 10) | (2 << 12); // IN_0 rising edge only condition

 LPC_SCT->EVENT[2].STATE = 0xFFFFFFFF; // event 2 happens in all states
 LPC_SCT->EVENT[2].CTRL = (1 << 0) | (1 << 12); // match 1 (DC1) only condition

 LPC_SCT->EVENT[3].STATE = 0xFFFFFFFF; // event 3 happens in all states
 LPC_SCT->EVENT[3].CTRL = (2 << 0) | (1 << 12); // match 2 (DC) only condition

 LPC_SCT->OUT[0].SET = (1 << 0) | (1 << 2); // event 0 and 2 set OUT0 (blue LED)
 LPC_SCT->OUT[0].CLR = (1 << 2); // event 2 clears OUT0 (blue LED)
 LPC_SCT->OUT[1].SET = (1 << 3); // event 3 sets OUT1 (red LED)
 LPC_SCT->OUT[1].CLR = (1 << 0) | (1 << 3); // event 0 and 3 clear OUT1 (red LED)
 LPC_SCT->RES |= 0x0000000F; // toggle OUT0 and OUT1 on conflict
 LPC_SCT->OUTPUT |= 1; // default set OUT0 and clear OUT1

 LPC_SCT->STOP_L = (1 << 0); // event 0 will stop the timer
 LPC_SCT->EVEN = (1 << 1); // event 1 will generate an irq

 NVIC_EnableIRQ(SCT_IRQn); // enable SCTx interrupt

 LPC_SCT->CTRL_L &= ~(1 << 2); // start timer
}

Fig 17. PWM with dead-time initialization code

9.5 Adjusting the duty-cycle

The dead-time can be set by having a slight difference in the two duty cycles. Updating

the duty cycle is done by:

Temporally disabling the update of the match registers of the low counter (set bit

NORELOAD_L in register CONFIG).

Loading the match registers with their new values

Enabling the update of the low counter match registers again (clear bit NORELOAD_L in

register CONFIG).

NXP Semiconductors AN11538
 SCTimer/PWM Cookbook

AN11538 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

Application Note Rev. 5.0 — 21 March 2016 24 of 61

9.6 Result

Fig 18. 2-channel PWM with dead-time control: There is a delay between one channel

going low and the other channel going high

NXP Semiconductors AN11538
 SCTimer/PWM Cookbook

AN11538 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

Application Note Rev. 5.0 — 21 March 2016 25 of 61

Fig 19. ABORT input goes low and stops the PWM output

Fig 20. ABORT pin goes high and restarts the PWM

NXP Semiconductors AN11538
 SCTimer/PWM Cookbook

AN11538 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

Application Note Rev. 5.0 — 21 March 2016 26 of 61

10. Match reload

10.1 Purpose

In the previous example, a PWM with a dead-time interval was implemented using the

SCTimer/PWM (only L counter). Now we will demonstrate how to use the match reload

registers to change the duty cycle of the two PWM signals and maintain their dead-time

intervals using the NORELOAD_L bit in the SCTimer/PWM Configuration register.

10.2 Configuration

This example (SCTx_pwm_reload) is using the SysTick timer to generate a periodic

interrupt every 20 msec. The match reload values are changed in the SysTick interrupt

handler.

The application code is using GPIO input (SW1/SW3/R038) to control the duty cycle of

the PWM output signal. As long as input is high it will increase the duty cycle (every 20

msec), and when input is low it will decrease the duty cycle.

 Output(s) used: SCT_OUT1 (PWM1 red LED) and SCT_OUT0 (PWM0 blue/green

LED).

10.3 Initialization code

The initialization code is exactly the same as for the previous (SCTx_pwm_deadtime)

example except the ABORT input is not implemented.

10.4 Updating the reload values

The updating of the reload registers occurs in the SysTick timer interrupt. The interrupt is

configured to be generated every 20 msec. Setting the NORELOAD_L bit in the

SCTimer/PWM Configuration register stops the match register from being updated. This

allows us to update both the MATCHREL[1].L and MATCHREL[2].L, but both MATCH[1]

and MATCH[2] registers do not get updated with the new values until the NORELOAD_L

bit is reset to ‘0’. Fig 21 shows the complete SysTick timer interrupt code.

NXP Semiconductors AN11538
 SCTimer/PWM Cookbook

AN11538 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

Application Note Rev. 5.0 — 21 March 2016 27 of 61

void SysTick_Handler(void)
{
 LPC_SCT->CONFIG |= (1 << 7); // stop reload process for L counter

 if (LPC_GPIO->PIN[2] & (1 << 5)) // P2_5 high?
 {
 if (LPC_SCT->MATCHREL[2].L < hperiod-1) // check if DC2 < Period of PWM
 {
 LPC_SCT->MATCHREL[1].L ++;
 LPC_SCT->MATCHREL[2].L ++;
 }
 }
 else if (LPC_SCT->MATCHREL[1].L > 1) // check if DC1 > 1
 {
 LPC_SCT->MATCHREL[1].L --;
 LPC_SCT->MATCHREL[2].L --;
 }
 LPC_SCT->CONFIG &= ~(1 << 7); // enable reload process for L counter
}

Fig 21. SysTick handler code for reloading match values

NXP Semiconductors AN11538
 SCTimer/PWM Cookbook

AN11538 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

Application Note Rev. 5.0 — 21 March 2016 28 of 61

11. Four-channel PWM

11.1 Purpose

This example (SCTx_pwm_4ch) demonstrates simple four-channel PWM generation. It

uses the unified 32-bit timer mode to generate single-edge aligned outputs. Channels

can have different polarity. The demonstration state machine has been configured for

positive pulses at SCT_OUT0/1 and negative pulses at SCT_OUT2/3.

SCT_IN0 (coming from SCTIPU and assigned to P2_5 in case of LPC15xx) is used as

ABORT input. If low, it forces the outputs to their idle states, halts the timer, and

generates an interrupt. For some hardware boards ABORT input is generated internally.

11.2 Configuration

 Input(s) used: SCT_IN0 (!ABORT).

 Output(s) used: SCT_OUT0 (green trace PWM1) and SCT_OUT1 (red trace PWM2).

 SCT_OUT2 (yellow trace PWM3) and SCT_OUT3 (blue trace PWM4).

 Match used: Match 0 to 4.

 Event used: Event 0 to 5.

 State used: none.

11.3 Design

Fig 22 shows the Red State diagram for this example. However, the tool is not used to

generate the SCTimer/PWM code, but just given as a reference.

NXP Semiconductors AN11538
 SCTimer/PWM Cookbook

AN11538 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

Application Note Rev. 5.0 — 21 March 2016 29 of 61

Fig 22. State diagram (Red State) 4-channel PWM generation

11.4 Initialization code

#define pwm_val1 (400000) // duty cycle PWM1
#define pwm_val2 (500000) // duty cycle PWM2
#define pwm_val3 (100000) // duty cycle PWM3
#define pwm_val4 (900000) // duty cycle PWM4
#define pwm_cycle (1000000)

void SCT_Init(void)
{
 LPC_SCT->CONFIG |= (1 << 0) | (1 << 17); // unified timer, auto limit

 LPC_SCT->MATCH[0].U = pwm_cycle; // match 0 on PWM cycle
 LPC_SCT->MATCHREL[0].U = pwm_cycle;
 LPC_SCT->MATCH[1].U = pwm_val1; // match 1 on val1 (PWM1)
 LPC_SCT->MATCHREL[1].U = pwm_val1;
 LPC_SCT->MATCH[2].U = pwm_val2; // match 2 on val2 (PWM2)
 LPC_SCT->MATCHREL[2].U = pwm_val2;
 LPC_SCT->MATCH[3].U = pwm_val3; // match 3 on val3 (PWM3)
 LPC_SCT->MATCHREL[3].U = pwm_val3;
 LPC_SCT->MATCH[4].U = pwm_val4; // match 4 on val4 (PWM4)
 LPC_SCT->MATCHREL[4].U = pwm_val4;

 LPC_SCT->EVENT[0].STATE = 0xFFFFFFFF; // event 0 happens in all states
 LPC_SCT->EVENT[0].CTRL = (0 << 0) | (1 << 12); // match 0 (pwm_cycle) only condition

 LPC_SCT->EVENT[1].STATE = 0xFFFFFFFF; // event 1 happens in all states
 LPC_SCT->EVENT[1].CTRL = (1 << 0) | (1 << 12); // match 1 (pwm_val1) only condition

 LPC_SCT->EVENT[2].STATE = 0xFFFFFFFF; // event 2 happens in all states
 LPC_SCT->EVENT[2].CTRL = (2 << 0) | (1 << 12); // match 2 (pwm_val2) only condition

NXP Semiconductors AN11538
 SCTimer/PWM Cookbook

AN11538 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

Application Note Rev. 5.0 — 21 March 2016 30 of 61

 LPC_SCT->EVENT[3].STATE = 0xFFFFFFFF; // event 3 happens in all states
 LPC_SCT->EVENT[3].CTRL = (3 << 0) | (1 << 12); // match 3 (pwm_val3) only condition

 LPC_SCT->EVENT[4].STATE = 0xFFFFFFFF; // event 4 happens in all states
 LPC_SCT->EVENT[4].CTRL = (4 << 0) | (1 << 12); // match 4 (pwm_val4) only condition

 LPC_SCT->EVENT[5].STATE = 0xFFFFFFFF; // event 5 happens in all states
 LPC_SCT->EVENT[5].CTRL = (0 << 10) | (2 << 12); // IN_0 LOW only condition

 LPC_SCT->OUT[0].SET = (1 << 0); // event 0 sets OUT0 (PWM1)
 LPC_SCT->OUT[0].CLR = (1 << 1) | (1 << 5); // event 1 and 5 clear OUT0 (PWM1)
 LPC_SCT->OUT[1].SET = (1 << 0); // event 0 sets OUT1 (PWM2)
 LPC_SCT->OUT[1].CLR = (1 << 2) | (1 << 5); // event 2 and 5 clear OUT1 (PWM2)
 LPC_SCT->OUT[2].SET = (1 << 3) | (1 << 5); // event 3 and 5 set OUT2 (PWM3)
 LPC_SCT->OUT[2].CLR = (1 << 0); // event 0 clear OUT2 (PWM3)
 LPC_SCT->OUT[3].SET = (1 << 4) | (1 << 5); // event 4 and 5 set OUT3 (PWM4)
 LPC_SCT->OUT[3].CLR = (1 << 0); // event 0 clear OUT3 (PWM4)
 LPC_SCT->OUTPUT = 0x0000000C; // default clear OUT0/1 and set OUT2/3
 LPC_SCT->RES = 0x0000005A; // conflict: Inactive state takes precedence
 // SCT2_OUT0/1: Inactive state low
 // SCT2_OUT2/3: Inactive state high

 LPC_SCT->HALT_L = (1 << 5); // event 5 will halt the timer
 LPC_SCT->LIMIT_L = (1 << 5); // event 5 will limit the timer
 LPC_SCT->EVEN = (1 << 0) | (1 << 5); // event 0 and 5 will generate an irq

 NVIC_EnableIRQ(SCT_IRQn); // enable SCTimer/PWM interrupt

 LPC_SCT->CTRL_L &= ~(1 << 2); // start timer
}

Fig 23. 4-channel PWM Initialization code

11.5 Result

Fig 24. 4-channel PWM: duty cycles of two channels change every five PWM cycles

NXP Semiconductors AN11538
 SCTimer/PWM Cookbook

AN11538 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

Application Note Rev. 5.0 — 21 March 2016 31 of 61

SCT_OUT1 (red trace) 50 %

SCT_OUT0 (green trace) 40 %

SCT_OUT2 (yellow trace) 10 %

SCT_OUT3 (blue trace) 90 %

ABORT (white)

Cursor positions A and B mark the early stage of two consecutive PWM cycles.

Cursor position D marks the abort state. Note that the idle level of SCT_OUT1 and SCT_OUT0 are low,

while the idle level of SCT_OUT2 and SCT_OUT3 are high.

Fig 25. 4-channel PWM: duty cycles of two channels change every five PWM cycles

NXP Semiconductors AN11538
 SCTimer/PWM Cookbook

AN11538 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

Application Note Rev. 5.0 — 21 March 2016 32 of 61

12. Decoding PWM

12.1 Purpose

This example (SCTx_pwm_decode) is using the capture and capture control features. It

implements a PWM decoder which measures the duty cycle of a PWM signal and

determines whether it is above (max_width) or below (min_width) a specific value. The

PWM signal frequency is assumed to be 10 kHz. Two output signals (width_error and

timeout) are included to indicate when the 10 kHz signal has an error or is missing.

12.2 Configuration

 Input(s) used: SCT_IN0 (apply the 10 kHz PWM signal here)

 Output(s) used:

 SCT_OUT0, timeout indicator, low active. Output timeout activated if no edge is

detected for three PWM periods.

 SCT_OUT1, indicator for duty cycle out of bounds, low active. This output is also

active when a timeout occurs.

 Match/Cap used: Match 0 to 2 and Capture 3 and 4.

 Event used: Event 0 to 5.

 State used: State 0 and 1.

NXP Semiconductors AN11538
 SCTimer/PWM Cookbook

AN11538 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

Application Note Rev. 5.0 — 21 March 2016 33 of 61

12.3 Design

Fig 26. State diagram for decoding PWM

NXP Semiconductors AN11538
 SCTimer/PWM Cookbook

AN11538 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

Application Note Rev. 5.0 — 21 March 2016 34 of 61

12.4 Initialization code

#define PWM_FREQUENCY 10000 // PWM frequency in Hz
#define PWM_RESOLUTION_NS 1000 // Timer resolution in ns
#define PWM_MIN_DUTY_PERCENT 25 // Minimum allowed duty cycle in %
#define PWM_MAX_DUTY_PERCENT 70 // Maximum allowed duty cycle in %

#define SCT_PRESCALER (((SystemCoreClock / 1000u) * PWM_RESOLUTION_NS) / 1000000u - 1u)
#define match_min_width ((10000000u * PWM_MIN_DUTY_PERCENT) / (PWM_FREQUENCY * PWM_RESOLUTION_NS))
#define match_max_width ((10000000u * PWM_MAX_DUTY_PERCENT) / (PWM_FREQUENCY * PWM_RESOLUTION_NS))
#define match_no_input ((10000000u * 300) / (PWM_FREQUENCY * PWM_RESOLUTION_NS))

void SCT_Init(void)
{
 LPC_SCT->CONFIG |= (1 << 0) | (1 << 17); // unified, auto limit

 LPC_SCT->CTRL_U |= (SCT_PRESCALER << 5); // set prescaler
 LPC_SCT->REGMODE_L = 0x00000018; // 3x MATCH, 2x CAPTURE used

 LPC_SCT->MATCH[0].U = match_max_width; // match_max_width
 LPC_SCT->MATCHREL[0].U = match_max_width;
 LPC_SCT->MATCH[1].U = match_min_width; // match_min_width
 LPC_SCT->MATCHREL[1].U = match_min_width;
 LPC_SCT->MATCH[2].U = match_no_input; // match_no_input
 LPC_SCT->MATCHREL[2].U = match_no_input;

 LPC_SCT->EVENT[0].STATE = 0xFFFFFFFF; // event 0 happens in all states
 LPC_SCT->EVENT[0].CTRL = (2 << 0) | (1 << 12); // related to match_no_input only
 LPC_SCT->EVENT[1].STATE = 0xFFFFFFFF; // event 1 happens in all states
 LPC_SCT->EVENT[1].CTRL = (1 << 10) | (2 << 12); // IN_0 rising edge condition only
 LPC_SCT->EVENT[2].STATE = (1 << 0); // event 2 happens in state 0
 LPC_SCT->EVENT[2].CTRL = (1 << 0) | // related to match_min_width
 (1 << 12) | // match condition only
 (1 << 14) | // STATEV is loaded into state
 (1 << 15); // new state is 1
 LPC_SCT->EVENT[3].STATE = (1 << 1); // event 3 happens in state 1
 LPC_SCT->EVENT[3].CTRL = (2 << 10) | // IN_0 falling edge
 (2 << 12) | // IO condition only
 (1 << 14) | // STATEV is loaded into state
 (0 << 15); // new state is 0
 LPC_SCT->EVENT[4].STATE = (1 << 1); // event 4 happens in state 1
 LPC_SCT->EVENT[4].CTRL = (0 << 0) | // related to match_max_width
 (1 << 12) | // match condition only
 (1 << 14) | // STATEV is loaded into state
 (0 << 15); // new state is 0
 LPC_SCT->EVENT[5].STATE = (1 << 0); // event 5 happens in state 0
 LPC_SCT->EVENT[5].CTRL = (2 << 10) | (2 << 12); // IN_0 falling edge condition only

 LPC_SCT->CAPCTRL[3].U = (1 << 1); // event 1 is causing capture 3
 LPC_SCT->CAPCTRL[4].U = (1 << 3) | (1 << 5); // event 3 and 5 cause capture 4
 LPC_SCT->OUT[0].SET = (1 << 1); // event 1 set OUT0 (no timeout)
 LPC_SCT->OUT[0].CLR = (1 << 0); // event 0 clear OUT0 (timeout)
 LPC_SCT->OUT[1].SET = (1 << 3); // event 3 set OUT1 (no width error)
 LPC_SCT->OUT[1].CLR = (1 << 0) | (1 << 5); // event 0 and 5 clear OUT1 (width error)
 LPC_SCT->OUTPUT |= 3; // default set OUT0 and OUT1
 LPC_SCT->LIMIT_L = (1 << 0) | (1 << 1); // event 0 and 1 limit the timer
 LPC_SCT->EVEN = (1 << 0) | (1 << 5); // event 0 and 5 generate an irq

 NVIC_EnableIRQ(SCT_IRQn); // enable SCTimer/PWM interrupt
 LPC_SCT->CTRL_U &= ~(1 << 2); // start timer
}

Fig 27. Decoding PWM initialization code

NXP Semiconductors AN11538
 SCTimer/PWM Cookbook

AN11538 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

Application Note Rev. 5.0 — 21 March 2016 35 of 61

13. RC5 transmission

13.1 Purpose

This example (SCTx_rc5_send) uses the SCTimer/PWM as an RC5 transmitter intended

to drive an infrared LED for remote control. It’s a very cost effective and low power

alternative for older or even discontinued devices like the PCA84C122 and the SAA3010.

Fig 28. RC5 frame example

13.2 Configuration

Both halves of the SCTimer/PWM are used. The lower 16-bit timer is used to generate

the 36 kHz modulated pulse with 25 % duty cycle. A (dummy) port pin is used as an input

to the SCT. The software selects pull-up or pull-down at SCT_IN0 input pin to control the

burst activation. The high part of the timer is used to send out the actual Manchester

encoded data.

The MRT (Multi Rate Timer) interrupt handler (MRT_IRQHandler in main.c) is used to

send the 14 data bits.

 Input(s): SCT_IN0 internally used (dummy) input that enables burst if high.

 Output(s): SCT_OUT0 used as LED driver output, high active. Outputs a burst of a

36 kHz signal. Single 36 kHz pulses have 25 % duty cycle.

 Match used: Match 0 and 1.

 Events used: 3.

 States used: none.

32 x

1 1 0 0 0 0 0 1 1 0 1 1 1 1

6.944 us

27.777 us

S F C
5

system bits

6

command bits

1.778 ms

NXP Semiconductors AN11538
 SCTimer/PWM Cookbook

AN11538 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

Application Note Rev. 5.0 — 21 March 2016 36 of 61

13.3 Design

Fig 29. RC5 transmitter state diagram

13.4 Result

Fig 30. One complete RC5 frame measured at SCT_OUT0

Fig 31. Burst of 32 carrier pulses for one high bit of a frame

NXP Semiconductors AN11538
 SCTimer/PWM Cookbook

AN11538 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

Application Note Rev. 5.0 — 21 March 2016 37 of 61

14. RC5 receiving

14.1 Purpose

This example (SCTx_rc5_receive) uses the SCTimer/PWM low timer part as an RC5

receiver (Manchester decoding). Received RC5 frames are sent out over an RS232

interface using the U(S)ART0 of the microcontroller (at 19200 baud).

Fig 32. RC5 receiver hardware setup with LPC1549

14.2 Configuration

The hardware setup is shown in Fig 32. The SCTimer/PWM input clock is pre-scaled to

1 MHz. SCTimer/PWM input 0 is used to generate events on both rising and falling edge

of the input signal. The events are used to capture the counter values, to limit (reset) the

counter and to generate an interrupt at the rising edge. Inside the SCTimer/PWM

interrupt handler the received data is decoded.

 Input(s): SCT_IN0 used to receive the RC5 data.

 Output(s): none.

 Match/Capture used: Match 0, Capture 1 and 2.

 Events used: 3.

 States used: none.

LPC1549

SCT2_IN0

IR

3V3

RS232
TxD

RxD

NXP Semiconductors AN11538
 SCTimer/PWM Cookbook

AN11538 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

Application Note Rev. 5.0 — 21 March 2016 38 of 61

14.3 Design

Fig 33. RC5 receiver state diagram

14.4 Initialization code

void RC5_Init(void)
{
 LPC_SYSCON->SYSAHBCLKCTRL1 |= EN1_SCT2; // enable the SCT2 clock
 LPC_SCT2->CTRL_L |= (SystemCoreClock/1000000-1) << 5; // set prescaler, SCTimer/PWM clock = 1 MHz
 LPC_SCT2->REGMODE_L = (1 << 1) | (1 << 2); // register pair 1 and 2 are capture
 LPC_SCT2->MATCH[0].L = 12000; // match 0 @ 12000/1MHz = 12 msec (timeout)
 LPC_SCT2->MATCHREL[0].L = 12000;
 LPC_SCT2->EVENT[0].STATE = 0x00000001; // event 0 only happens in state 0
 LPC_SCT2->EVENT[0].CTRL = (0 << 0) | // MATCHSEL[3:0] = related to match 0
 (1 << 12) | // COMBMODE[13:12] = uses match condition only
 (1 << 14) | // STATELD [14] = STATEV is loaded into state
 (0 << 15); // STATEV [15] = new state is 0
 LPC_SCT2->EVENT[1].STATE = 0x00000001; // event 1 only happens in state 0
 LPC_SCT2->EVENT[1].CTRL = (0 << 6) | // IOSEL [9:6] = SCT_IN0
 (2 << 10) | // IOCOND [11:10] = falling edge
 (2 << 12) | // COMBMODE[13:12] = uses IO condition only
 (1 << 14) | // STATELD [14] = STATEV is loaded into state
 (0 << 15); // STATEV[15] = new state is 0
 LPC_SCT2->EVENT[2].STATE = 0x00000001; // event 2 only happens in state 0
 LPC_SCT2->EVENT[2].CTRL = (0 << 6) | // IOSEL [9:6] = SCT_IN0
 (1 << 10) | // IOCOND [11:10] = rising edge
 (2 << 12) | // COMBMODE[13:12] = uses IO condition only
 (1 << 14) | // STATELD [14] = STATEV is loaded into state
 (0 << 15); // STATEV [15] = new state is 0
 LPC_SCT2->CAPCTRL[1].L = (1 << 1); // event 1 causes capture 1 to be loaded
 LPC_SCT2->CAPCTRL[2].L = (1 << 2); // event 2 causes capture 2 to be loaded
 LPC_SCT2->LIMIT_L = 0x0007; // events 0, 1 and 2 are used as counter limit
 LPC_SCT2->EVEN = 0x00000005; // events 0 and 2 generate interrupts
 NVIC_EnableIRQ(SCT2_IRQn); // enable SCTimer/PWM interrupt
 LPC_SCT2->CTRL_L &= ~(1 << 2); // unhalt it
}

Fig 34. RC5 receiver SCTimer/PWM initialization code

14.5 Result

Received RC5 messages are send out over an RS232 interface using the U(S)ART0 of

the micro. A PC running TeraTerm (19200 baud) is used to display the received data. The

NXP Semiconductors AN11538
 SCTimer/PWM Cookbook

AN11538 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

Application Note Rev. 5.0 — 21 March 2016 39 of 61

first value represents the RC5 system byte; the second value gives the RC5 command

byte.

Fig 35. RC5 output at PC terminal

NXP Semiconductors AN11538
 SCTimer/PWM Cookbook

AN11538 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

Application Note Rev. 5.0 — 21 March 2016 40 of 61

15. SCTimer/PWM start_stop

15.1 Purpose

This project (SCTx_start_stop) shows a possible usage of SCTimer/PWM start and stop

events that can influence the other half of the same SCTimer.

In addition to the LPCXpresso code, this cookbook contains a sample application for the

SCTimer/PWM Fizzim designer tool using the Keil compiler (see Fig 36).

15.2 Configuration

The timer in the SCTimer/PWM is configured in split mode (2 x 16-bit timers). Each half

of the timer generates start and stop events, which alternatively starts and stops the

other side of the state machine, in a ping-pong like fashion.

Note: for keeping one timer in stopped state while exiting reset, the HALT bit needs to be

cleared in the same write cycle as the STOP bit.

15.3 Design

Fig 36. start_stop state diagram (Fizzim)

NXP Semiconductors AN11538
 SCTimer/PWM Cookbook

AN11538 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

Application Note Rev. 5.0 — 21 March 2016 41 of 61

16. Input synchronization

The SCTs have an option to synchronize inputs to the SCTimer/PWM input clock, before

the input is used to create an event.

Selecting the option is done in the global configuration register (bits 9 to 16).

If an input is synchronous to the SCTimer/PWM clock, you can select to have the unsync

option for faster response.

If an input is asynchronous to the SCTimer/PWM clock, especially if inputs are edge

sensitive, it is recommend to set the sync option, in order not to miss any inputs and/or

input edges. See Fig 38.

Fig 37. Configuration register INSYNC bits

Every rising edge of SCTIN_0 generates an event that toggles SCTOUT_0.

Fig 38. Left: no sync, inputs missed - Right: with sync okay

CTIN_0

CTOUT_0

input edge missed

NXP Semiconductors AN11538
 SCTimer/PWM Cookbook

AN11538 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

Application Note Rev. 5.0 — 21 March 2016 42 of 61

17. Dithering

17.1 Purpose

This example (SCTx_dithering) demonstrates the SCT’s dithering feature available on

some parts (see Table 1). By using this feature you can increase the average timer

resolution with a factor 16.

17.2 Configuration

The example code is using SCT0 and has been tested on an LPCXpresso board with an

LPC1549 running at 250 kHz (from IRC). SCT0 timer generates a 4 millisecond PWM

output @ SCT0_OUT0 (see Fig 39). The Duty cycle of the PWM signal starts with 25 %

(1 msec ON, 3 msec OFF).

SCT0_OUT0 is linked to P0_24 (green LED on LPCXpresso board).

Pressing pushbutton SW3 (P1_9) will change the LED brightness to 37.5 % by using the

SCTimer/PWM dithering feature (giving an average of 1.5 msec ON and 2.5 msec OFF).

Releasing pushbutton SW2 will change the LED brightness back to 25 %.

Fig 39. PWM output with dithering

17.3 Implementation

First thing needed is a very slow (1 msec) SCTimer/PWM input clock. To realize this, the

System Clock (= IRC) is divided by 48, resulting in a 250 kHz system clock (this is done

in module system_LPC15xx.c).

Next, the SCTimer/PWM prescaler is set to 250 to generate a 1 kHz SCTimer/PWM input

clock.

 LPC_SCT0->CTRL_U |= (249 << 5); // SCT0 clock input is:

 // 250KHZ/(249+1) = 1kHz (1msec)

NXP Semiconductors AN11538
 SCTimer/PWM Cookbook

AN11538 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

Application Note Rev. 5.0 — 21 March 2016 43 of 61

17.4 Result

Fig 40 shows the SCTimer/PWM output using three different values for the fractional

match register.

Fig 40. LPC15xx SCTimer/PWM dithering examples

FRACMAT = 0

FRACMAT = 8

FRACMAT = 15

NXP Semiconductors AN11538
 SCTimer/PWM Cookbook

AN11538 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

Application Note Rev. 5.0 — 21 March 2016 44 of 61

18. WS2811 LED driver

The WS2811 LED drivers use a simple one-wire protocol for transferring 24-bit RGB

values. Multiple WS2811 devices may be chained, and the RGB values for all of them

are sent together to the first device in the chain. The first device takes the first 24-bit

package to set its own RGB state, and retransmits the rest. Such blocks of RGB values

are separated from each other by a “reset code” on the data line, which is a simple

inactivity period of at least 50 μs in which the signal line is held low.

Fig 41. WS2811 one-wire communication protocol

A single 24-bit data package consists of 24-bit periods of either 1.25 μs or 2.5 μs,

depending on whether the WS2811 is configured for 800 kHz or 400 kHz. Each bit is

transmitted as a pulse with a duty cycle depending on the bit value. A “0” has a nominal

duty cycle of 20 %, while a “1” has a nominal duty cycle of 48 %. There is a large timing

tolerance when transmitting single bits, but accumulated jitter for a whole 24-bit package

or multiple RGB values should be at a minimum. The general waveforms of data bits 0

and 1 are shown below. You can also see a full RGB frame which represents the RGB

value 0xCA1722 (red channel = 0xCA, green channel = 0x17, blue channel = 0x22).

NXP Semiconductors AN11538
 SCTimer/PWM Cookbook

AN11538 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

Application Note Rev. 5.0 — 21 March 2016 45 of 61

Fig 42. WS2811 frame and bit waveforms

You can see that each color channel is sent with MSB first.

The values for the on and off periods of the data bits depend on the operation frequency

of the WS2811, which can be either 400 kHz or 800 kHz.

Fig 43. WS2811 specification

18.1 Implementation

The WS2811 transmitter design demonstrates the efficient use of states and events in

the SCT. It only uses one SCTimer/PWM half 16-bit timer, six events and 12 states (for

resources check Table 1), leaving more than 50 % of the SCTimer/PWM resources

available for another task.

Overview:

 Uses one 16-bit timer, leaving the other 16-bit timer free for other purposes.

 Uses the prescaler to run at a minimum clock frequency to save power.

 Autonomously send 24-bit frames, double-buffered.

NXP Semiconductors AN11538
 SCTimer/PWM Cookbook

AN11538 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

Application Note Rev. 5.0 — 21 March 2016 46 of 61

 Interrupt after each frame transmission, leaving almost a full frame time for CPU to

provide the next frame.

 Halt after last transmitted frame.

 Precede each multi-frame (block) transmission with a reset code of adjustable length.

18.2 Configuration

The SCTimer/PWM must be configured for split mode (CONFIG.UNIFY = 0). Conflict

resolution for the data output must be set to “no action” (this is the default).

18.2.1 Match registers

MATCH0/MATCHREL0 holds the bit length (period).

MATCH1/MATCHREL1 holds the T1H time.

MATCH2/MATCHREL2 holds the T0H time.

18.2.2 Inputs/outputs

The data output can be assigned to any of the available SCTx_OUTx signals by

configuring the corresponding SET and CLR registers of the output.

An auxiliary output is required for a double-buffering scheme. It can be assigned to any

of the SCTOUT signals, but does not have to be connected to a pin (internal signal).

18.2.3 States

States form the heart of the data transmission. For parts that only have a maximum of 15

states (like the LPC1500) we decided to send a frame in two bursts of 12 bits (needing

12 states). The state machine begins in state 11 and decrements the state after each

transmitted bit. After the last bit of a frame has been transmitted in state 0, the state

machine is forced to state 11 upon start of the next 12 bits. State 11 corresponds to the

first bit sent (MSB), and state 0 corresponds to the last bit sent (LSB).

At the start of a new bit, the data output is set. Two match registers set to time T0H

(MATCH1, EV13) and T1H (MATCH2, EV14) trigger events which clear the data output.

Without further events, this would always transmit a logical zero, since MATCH1 comes

first, and the bit's active time would end at T0H.

We need another event to determine the value of the data bit in each of the 12 states

11...0. This event (EV12) is configured to set the data output at time T0H (MATCH1).

Therefore, a conflict occurs at position T0H with the previously described event which

wants to clear the data output. As the conflict resolution register for the data output says

“no action”, the data output is not cleared at T0H, but rather remains set until MATCH2

triggers an event at T1H. When the transmit data word is written into the event state

register of the new event, it acts as a mask which enables this event only in those states

where the data word has a 1 in the corresponding bit position, so the SCTimer/PWM

transmits a 1. A 0 in the data word disables the event in the corresponding state, and the

SCTimer/PWM transmits a 0.

NXP Semiconductors AN11538
 SCTimer/PWM Cookbook

AN11538 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

Application Note Rev. 5.0 — 21 March 2016 47 of 61

Fig 44. SCTimer/PWM data bit handling

18.2.4 Event details

Event 15 determines the start of a new bit. It is active in all states, and is triggered by a

MATCH0 (bit time) event. This event sets the data output and decrements the state

number (i.e. it adds 31 to it). It is important that the state is preset to 12 before this event

occurs for the first time.

Event 14 determines the maximum output ON time, which is equivalent to T1H. It is

active in all data bit states except state 0 (1...23), and is triggered by MATCH2. This

event clears the data output. Event 10 (with extended functionality) replaces this event in

state 0.

Event 13 determines the end of a zero data bit, which is equivalent to T0H. It is active in

all data bit states, and is triggered by MATCH1. This event clears the data output. As this

event occurs before event 14 in a timer cycle, we would only ever send logical zero bits.

Therefore, events 12 and 11 can override the action of event 13. They occur at the same

time as event 13 (if enabled!), and cancel the output action due to conflict resolution set

to “no action”.

Event 12 forces transmission of a logical 1 from the first data buffer. The event is enabled

in those states (0...11) in which the transmit data word has a 1 in that bit position, and is

triggered by MATCH1. It is also qualified by the auxiliary flag (buffer selector) = 0. This

means that this event occurs at the same time as event 13, and with conflict resolution

set to “no action”, cancels the output clear action of event 13. This leads to the bit's ON

time being extended to T1H (data output is eventually cleared by event 14).

Event 11 is equivalent to event 12, except that its trigger condition checks for the

auxiliary flag = 1.

Event 10 determines the end of a frame transmission. It also takes the function of event

14 in state 0. It is active in state 0 only (LSB transmission), and is triggered by MATCH2

(the end of the last bit's ON period). It toggles the auxiliary bit, clears the data output, and

triggers an interrupt. In response to that interrupt, the CPU shall read the auxiliary bit,

and determine which buffer (= event state register 11 or 12) takes the next transmit frame

(12 bits) data. The CPU shall write a pattern (1 << 10 for event 10) to the HALT_H

register if it doesn't want another frame to be transmitted. This lets the transmission stop

at the end of the frame that has just been started. This event sets the state number to 12.

NXP Semiconductors AN11538
 SCTimer/PWM Cookbook

AN11538 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

Application Note Rev. 5.0 — 21 March 2016 48 of 61

18.3 Operation

The following steps are necessary once to prepare the SCTimer/PWM for this mode

(when SCTimer/PWM is globally halted). We assume that the H counter is used for

WS2811 mode.

1. Configure SCTimer/PWM for split mode.

2. Configure match registers:

a. MATCHREL0 = SystemCoreClock/DATA_SPEED - 1

b. MATCHREL1 = 20% of SystemCoreClock/DATA_SPEED - 1

c. MATCHREL2 = 48% of SystemCoreClock/DATA_SPEED - 1

3. Configure events:

a. Event 15: MATCH0, All states, DATA = 1 and STATE += 31

b. Event 14: MATCH2, All states except state 0 and DATA = 0

c. Event 13: MATCH1, All states and DATA = 0

d. Event 12: MATCH1 && AUX==0, All of states [11:0] where a logical 1 shall be

transmitted and DATA = 1

e. Event 11: MATCH1 && AUX==1, All of states [11:0] where a logical 1 shall be

transmitted, and DATA = 1

f. Event 10: MATCH2, State 0, IRQ, AUX = toggle and STATE = 12

NXP Semiconductors AN11538
 SCTimer/PWM Cookbook

AN11538 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

Application Note Rev. 5.0 — 21 March 2016 49 of 61

18.3.1 Transmission of a block of frames

1. Halt the H timer

2. Preset the reset time. Write the number of clock pulses required as a negative

number to the counter COUNT_H.

3. Set STATE_H = 12.

4. Prime transmit buffer by writing first transmit frame to event 12 state register. Make

sure bits [31:12] are zero.

5. Prime other transmit buffer by writing second transmit frame to event 11 state

register. Write 0 if only one frame is to be transmitted.

6. Start H timer as up counter (clear DOWN_H and HALT_H in register CTRL_H).

18.3.2 Interrupt handling

Interrupts are triggered after a frame has been transmitted completely.

1. If this was the last transmit frame, stop the timer.

2. Read auxiliary output bit. If 1, write next frame to event 12 state register, else to

event 11 state register.

Additional action may be required if the above procedure is not followed, and the data

output is stuck high. You should not simply clear the output, since the access to the

output register may present a race condition with hardware access to the outputs from

the other (L) timer running a different application.

18.4 Result

Fig 45 shows the transmission of one 12 bit frame (0x123). The light blue trace is just used

for debug. This GPIO signal toggles every frame (inside Event 10 interrupt service routine).

Fig 45. WS2811 LED driver one 12 bit frame transmission

NXP Semiconductors AN11538
 SCTimer/PWM Cookbook

AN11538 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

Application Note Rev. 5.0 — 21 March 2016 50 of 61

Fig 46 shows the transmission of a block of four 24-bit RGB WS2811 LED driver values

(split into 8 12 bit frames: 0x123, 0x456, 0xFF0, 0x0CC, 0x555, 0x555, 0x800, 0x001).

Fig 46. WS2811 transmission of a block of four 24 bit RGB values

Fig 47 shows the transmission of blocks of RGB values separated from each other by a

“reset code” on the data line, which is a simple inactivity period of at least 50 μs in which

the signal line is held low.

Fig 47. WS2811 transfer of blocks of RGB values separated by inactivity periods

NXP Semiconductors AN11538
 SCTimer/PWM Cookbook

AN11538 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

Application Note Rev. 5.0 — 21 March 2016 51 of 61

19. WS2812 LED driver

19.1 Purpose

This example demonstrates an alternative way of using a smaller SCT with less

resources (like in LPC81x) to build a serial interface as shown in the previous example.

This time we are using a different, but very similar device, the WS2812 that has slightly

different timing spec. The operation frequency of the WS2812 is always 800 kHz.

Fig 48. WS2812 data transfer time (TH + TL = 1.25μs ± 600ns)

19.2 Configuration

The idea is to use the SCT to re-shape the output data of the SPI peripheral. Therefore

the Switch Matrix is used to redirect the SPI’s MOSI and SCK signals to inputs of the SCT.

The programmed SPI bit rate is 800 kHz and one WS2812 (24-bit) RGB LED frame is sent

as three 8-bit SPI frames.

Fig 49. LPC812 – SPI / SCTimer / WS2812 hardware configuration

LPC81x

SPI

SCT

SWM
SCK

MOSI

P0_16

P0_13

P0_15

IN0

IN1

OUT0
DIN DO

PIX1

DIN DO

PIX2

DIN DO

PIX3

WS2812

NXP Semiconductors AN11538
 SCTimer/PWM Cookbook

AN11538 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

Application Note Rev. 5.0 — 21 March 2016 52 of 61

The demo example code writes RGB data to the first three LEDs of the WS2812 in bursts

of 72 bits (3 x 24) as if it is a SPI peripheral. The code is tested on a MCORE48 board

with an LPC812 running at 24 MHz (from on-chip IRC using the PLL).

19.3 Implementation

The WS2812 transmitter design demonstrates the efficient use of states and events in the

SCT. It uses the SCTimer/PWM in unified (32-bit) timer mode, six events and 2 states.

Fig 50. SCT - WS2812 driver implementation

19.3.1 Match registers

MATCH0 is used to hold the sample time (always one SCT clock). It generates either event

1 or 2 depending on the level of the SCT_IN1 (MOSI) input.

MATCH1 holds the T0H time (0.35 us) and if the SCT is in state 0 it will trigger event 3.

MATCH2 holds the T1H time (0.70 us) and if the SCT is in state 1 it will trigger event 4.

MATCH3 holds the transmission done time (> 50 us) and is used to STOP the SCTimer.

EV0

EV3

SCT_IN0 - SCK

SCT_IN1 - MOSI

MATCH 2 – T1H

MATCH 1 – T0H
MATCH 0 – sample

EV0 EV0 EV0 EV0 EV0 EV0 EV0

SCT_OUT0 - WS2812_DIO

EV1 EV1 EV2 EV1 EV2 EV2 EV1 EV1

EV3 EV4 EV3 EV4 EV4 EV3 EV3

MATCH 3 – TDONE

EV5

- - - STATE 0 STATE 0 STATE 1 STATE 0 STATE 1 STATE 1 STATE 0 STATE0

NXP Semiconductors AN11538
 SCTimer/PWM Cookbook

AN11538 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

Application Note Rev. 5.0 — 21 March 2016 53 of 61

19.3.2 Inputs/outputs

The SPI_SCK signal is assigned to input SCT_IN0. A rising edge generates event 0 in all

states.

The SPI_MOSI signal is assigned to input SCT_IN1. The level on this input is used to

determine if a ‘0’ or ‘1’ will be transmitted.

The transmit data output is assigned to SCT_OUT0.

19.3.3 States

Two states are used to determine the transmission of a logical 0 or 1 bit.

19.3.4 Event details

Event 0 determines the start of a new bit transmission. It is active in all states, and is

triggered by a rising edge on input 0 (SPI_SCK). This is a limiting and start event. On this

event output 0 (WS2812 data) is driven high. It does not change the state.

Event 1 forces a state 0 change. It is active in all states and is triggered by MATCH0

(sample time) AND a low level on input 1 (SPI_MOSI).

Event 2 forces a state 1 change. It is active in all states and is triggered by MATCH0

(sample time) AND a high level on input 1 (SPI_MOSI).

Event 3 determines the end of a logical zero data bit, which is equivalent to T0H. It is active

only in state 0, and is triggered by MATCH1. This event clears the data output and does

not change the state.

Event 4 determines the end of a logical one data bit, which is equivalent to T1H. It is active

only in state 1, and is triggered by MATCH2. This event clears the data output and does

not change the state.

Event 5 is generated at the end of a frame transmission. It is active in all states and is

triggered by MATCH3. This event stops the SCTimer, triggers an interrupt, and does not

change the state.

19.3.5 Interrupt handling

An interrupt is triggered by event 5 after a frame has been transmitted completely, a delay

of at least 50 us has passed, and the SCTimer is stopped. In response to that interrupt the

demo application sets a flag to indicate it is ready to transmit the next frame. A next frame

will be transmitted if new data is sent by the SPI peripheral.

19.4 Result

Figures below shows the transmission of WS2812 frames. The dark blue trace is SCK, the

light blue trace MOSI and the purple trace is the output data.

NXP Semiconductors AN11538
 SCTimer/PWM Cookbook

AN11538 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

Application Note Rev. 5.0 — 21 March 2016 54 of 61

Fig 51. WS2812 LED driver bit transmission.

Fig 52. WS2812 transmission of a block of three 24 bit RGB values.

NXP Semiconductors AN11538
 SCTimer/PWM Cookbook

AN11538 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

Application Note Rev. 5.0 — 21 March 2016 55 of 61

Fig 53. WS2812 transfer of blocks of RGB values separated by inactivity periods

20. PWM with 0 - 100% duty cycle

20.1 Purpose

This example (SCT_PWM_0_100) demonstrates how to generate a center aligned PWM

output with 0 to 100% duty cycle. It uses the low 16-bit SCTimer/PWM timer to generate a

10 kHz PWM signal at SCT_OUT0. The SysTick timer is used to periodically decrease and

increase the duty cycle of the PWM signal by updating the MATCHRELOAD register. By

connecting SCT_OUT0 to an LED, this will adjust the brightness of the LED.

20.2 Configuration

The SCTimer/PWM uses MATCH[0].L to generate a timer limit that changes the counting

direction from up to down counting. A second match register MATCH[1].L is used to define

the duty cycle of the signal. When match event 1 occurs, it will set SCTimer/PWM output

0 when up counting and clear (reverse) the output when down counting. Output 0 is

assigned to P0_14 by the switch matrix module.

MATCH[1].L = 0 results in 0% duty cycle (signal OFF).

MATCH[1].L = MATCH[0].L - 1 results in 100% duty cycle (signal ON).

0 < MATCH[1].L < MATCH[0].L - 1 results a 1 to 99% duty cycle.

NXP Semiconductors AN11538
 SCTimer/PWM Cookbook

AN11538 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

Application Note Rev. 5.0 — 21 March 2016 56 of 61

20.3 Configuration code

/**
* SCT_L - is used for center aligned PWM at SCT_OUT0
*
* | PWM0 Period | |
* | | |
* +-----+ +-----+ +-----+
* | | | | | | OUT0
* ---+---------+ +---------+---------+ +---------+---------+ +----
*
* | | | | |
* EV0 EV0 EV0 EV0 EV0
*
* MATCH0_L used for PWM0 frequency period
* EV0 - all states - on MATCH1_L - set OUT0 if up counting, clear OUT0 if down counting
*
* P0.14 [O] - SCT_OUT0 : PWM
*
**/
#include "LPC8xx.h"

#define PWM 14 // PWM at port pin P0_14
#define OUT0 0 // SCT_OUT0 as PWM output
#define PWM_FREQ 10000 // PWM required frequency = 10KHz
#define PWM_PERIOD (SystemCoreClock / (PWM_FREQ * 2)) // PWM counter period (*2 because of bi-dir mode)
 // example 24MHz/10KHz*2 = 1200 SCT clocks

void PWM_set(uint8_t val) // set PWM duty cycle (from 0 to 100%)
{
#define PWM_STEP (PWM_PERIOD / 100) // PWM resolution in 100 steps

 if (val == 0) // check val between 0% and 100%
 LPC_SCT->MATCHREL[1].L = 0;
 else if (val < 100)
 LPC_SCT->MATCHREL[1].L = (PWM_STEP * val) - 1;
 else
 LPC_SCT->MATCHREL[1].L = PWM_PERIOD - 2; // set to 100% duty cycle
}

void SCT_Init(void)
{
 LPC_SYSCON->SYSAHBCLKCTRL |= (1 << 7) | (1 << 8); // enable the SWM and SCT clock

 LPC_SWM->PINASSIGN6 &= ((PWM << 24) | 0x00FFFFFF); // SCT_OUT0 = PWM

 LPC_SCT->CONFIG |= (1 << 17); // auto limit _L (on match 0)
 LPC_SCT->OUTPUT |= (0 << OUT0); // preset OUT0 low
// LPC_SCT->OUTPUT |= (1 << OUT0); // preset OUT0 high (for low active signal)
 LPC_SCT->OUTPUTDIRCTRL |= (0x1 << 0); // reverse OUT0 set/clr when counter _L is
 // down counting (center aligned mode)
 LPC_SCT->CTRL_L |= (1 << 4); // bi-dir count mode

 LPC_SCT->MATCH[0].L = PWM_PERIOD - 1; // match 0 @ PWM freq
 LPC_SCT->MATCH[1].L = 0; // use match 1 for PWM duty cycle

 LPC_SCT->EVENT[0].STATE = 0x00000003; // event 0 happens in all states (both 0 and 1)
 LPC_SCT->EVENT[0].CTRL = (1 << 0) | // MATCHSEL[3:0] = related to match 1
 (0 << 4) | // HEVENT[4] = ev 0 belongs to the L timer
 (1 << 12) | // COMBMODE[13:12] = match condition only
 (0 << 14) | // STATELD[14] = STATEV is added to state
 (0 << 15); // STATEV[15] = 0 (no change)

NXP Semiconductors AN11538
 SCTimer/PWM Cookbook

AN11538 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

Application Note Rev. 5.0 — 21 March 2016 57 of 61

 LPC_SCT->OUT[OUT0].SET = (1 << 0); // ev 0 sets the OUT0 signal
// LPC_SCT->OUT[OUT0].CLR = (1 << 0); // ev 0 clears the OUT0 signal (low active mode)

 LPC_SCT->CTRL_L &= ~(1 << 2); // start the _L counter
}

Fig 54. Center aligned PWM with 0 – 100% duty cycle

21. PWM at _L and _H

21.1 Purpose

This example (SCT_PWML_PWMH) uses the SCT_L half to generate PWM0 signal and

SCT_H half to create a second independent PWM1 signal. Both PWM signals are center

aligned with 0 to 100% duty cycle.

21.2 Configuration

/**
* SCT_L - is used for PWM0 at SCT_OUT0
* SCT_H - is used for PWM1 at SCT_OUT1
*
* Both PWM0/1 are center aligned PWM signals, Pins used in this application:
*
* P0.14 [O] - SCT_OUT0 : PWM0
* P0.15 [O] - SCT_OUT1 : PWM1
*
**/
#include "LPC8xx.h"

void SCT_Init(void)
{
 LPC_SYSCON->SYSAHBCLKCTRL |= (1 << 7) | (1 << 8); // enable the SWM and SCT clock

 LPC_SWM->PINASSIGN6 &= ((PWM0 << 24) | 0x00FFFFFF); // SCT_OUT0 = PWM0
 LPC_SWM->PINASSIGN7 &= ((PWM1 << 0) | 0xFFFFFF00); // SCT_OUT1 = PWM1

/**
* SCT_L: low part configuration:
**/

 LPC_SCT->CONFIG |= (1 << 17); // auto limit _L (on match 0)
 LPC_SCT->OUTPUT |= (0 << OUT0); // preset OUT0 low
// LPC_SCT->OUTPUT |= (1 << OUT0); // preset OUT0 high (for low active signal)
 LPC_SCT->OUTPUTDIRCTRL |= (0x1 << 0); // reverse OUT0 set/clr when counter _L is
 // down counting (center aligned mode)
 LPC_SCT->CTRL_L |= (1 << 4); // bi-dir count mode

 LPC_SCT->MATCH[0].L = PWM0_PERIOD - 1; // match 0 @ PWM0 freq
 LPC_SCT->MATCHREL[0].L = PWM0_PERIOD - 1;
 LPC_SCT->MATCH[1].L = 0; // use match 1 for PWM0 duty cycle

NXP Semiconductors AN11538
 SCTimer/PWM Cookbook

AN11538 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

Application Note Rev. 5.0 — 21 March 2016 58 of 61

 LPC_SCT->MATCHREL[1].L = 0; // PWM0 off after power-up/reset

 LPC_SCT->EVENT[0].STATE = 0x00000003; // event 0 happens in all states (both 0 and 1)
 LPC_SCT->EVENT[0].CTRL = (1 << 0) | // MATCHSEL[3:0] = related to match 1
 (0 << 4) | // HEVENT[4] = ev 0 belongs to the L timer
 (1 << 12) | // COMBMODE[13:12] = match condition only
 (0 << 14) | // STATELD[14] = STATEV is added to state
 (0 << 15); // STATEV[15] = 0 (no change)

 LPC_SCT->OUT[OUT0].SET = (1 << 0); // event 0 sets the OUT0 signal
// LPC_SCT->OUT[OUT0].CLR = (1 << 0); // ev 0 clears the OUT0 signal (low active mode)

/**
* SCT_H: high part configuration:
**/

 LPC_SCT->CONFIG |= (1 << 18); // auto limit _H (on match 0)
 LPC_SCT->OUTPUT |= (0 << OUT1); // preset OUT1 low
// LPC_SCT->OUTPUT |= (1 << OUT1); // preset OUT1 high (for low active signal)
 LPC_SCT->OUTPUTDIRCTRL |= (0x2 << 2); // reverse OUT0 set/clr when counter _H is
 // down counting (center aligned mode)
 LPC_SCT->CTRL_H |= (1 << 4); // bi-dir count mode

 LPC_SCT->MATCH[0].H = PWM1_PERIOD - 1; // match 0 @ PWM0 freq
 LPC_SCT->MATCHREL[0].H = PWM1_PERIOD - 1;
 LPC_SCT->MATCH[1].H = 0; // use match 1 for PWM1 duty cycle
 LPC_SCT->MATCHREL[1].H = 0; // PWM1 off after power-up/reset

 LPC_SCT->EVENT[1].STATE = 0x00000003; // event 1 happens in all states (both 0 and 1)
 LPC_SCT->EVENT[1].CTRL = (1 << 0) | // MATCHSEL[3:0] = related to match 1
 (1 << 4) | // HEVENT[4] = ev 1 belongs to the H timer
 (1 << 12) | // COMBMODE[13:12] = match condition only
 (0 << 14) | // STATELD[14] = STATEV is added to state
 (0 << 15); // STATEV[15] = 0 (no change)

 LPC_SCT->OUT[OUT1].SET = (1 << 1); // event 1 sets the OUT1 signal
// LPC_SCT->OUT[OUT1].CLR = (1 << 1); // ev 1 clears the OUT1 signal (low active mode)

 LPC_SCT->CTRL_L &= ~(1 << 2); // start the _L counter
 LPC_SCT->CTRL_H &= ~(1 << 2); // start the _H counter
}

Fig 55. Dual center aligned PWM at _L and _H

E
rro

r!

U
n
k
n

o
w

n

d
o

c
u

m
e

n
t

p
ro

p
e

rty

n
a

m
e

.

E
rro

r! U
n
k
n
o

w
n
 d

o
c
u
m

e
n
t p

ro
p
e
rty

 n
a
m

e
.

E
rro

r! U
n

k
n

o
w

n
 d

o
c
u

m
e

n
t p

ro
p

e
rty

n
a

m
e

.

NXP Semiconductors AN11538
 SCTimer/PWM Cookbook

AN11538 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

Application Note Rev. 5.0 — 21 March 2016 59 of 61

22. Legal information

22.1 Definitions
Draft — The document is a draft version only. The content is still under

internal review and subject to formal approval, which may result in

modifications or additions. NXP Semiconductors does not give any

representations or warranties as to the accuracy or completeness of

information included herein and shall have no liability for the consequences

of use of such information.

22.2 Disclaimers
Limited warranty and liability — Information in this document is believed to

be accurate and reliable. However, NXP Semiconductors does not give any

representations or warranties, expressed or implied, as to the accuracy or

completeness of such information and shall have no liability for the

consequences of use of such information. NXP Semiconductors takes no

responsibility for the content in this document if provided by an information

source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental,

punitive, special or consequential damages (including - without limitation -

lost profits, lost savings, business interruption, costs related to the removal

or replacement of any products or rework charges) whether or not such

damages are based on tort (including negligence), warranty, breach of

contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason

whatsoever, NXP Semiconductors’ aggregate and cumulative liability

towards customer for the products described herein shall be limited in

accordance with the Terms and conditions of commercial sale of NXP

Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make

changes to information published in this document, including without

limitation specifications and product descriptions, at any time and without

notice. This document supersedes and replaces all information supplied prior

to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed,

authorized or warranted to be suitable for use in life support, life-critical or

safety-critical systems or equipment, nor in applications where failure or

malfunction of an NXP Semiconductors product can reasonably be expected

to result in personal injury, death or severe property or environmental

damage. NXP Semiconductors and its suppliers accept no liability for

inclusion and/or use of NXP Semiconductors products in such equipment or

applications and therefore such inclusion and/or use is at the customer’s

own risk.

Applications — Applications that are described herein for any of these

products are for illustrative purposes only. NXP Semiconductors makes no

representation or warranty that such applications will be suitable for the

specified use without further testing or modification.

Customers are responsible for the design and operation of their applications

and products using NXP Semiconductors products, and NXP

Semiconductors accepts no liability for any assistance with applications or

customer product design. It is customer’s sole responsibility to determine

whether the NXP Semiconductors product is suitable and fit for the

customer’s applications and products planned, as well as for the planned

application and use of customer’s third party customer(s). Customers should

provide appropriate design and operating safeguards to minimize the risks

associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default,

damage, costs or problem which is based on any weakness or default in the

customer’s applications or products, or the application or use by customer’s

third party customer(s). Customer is responsible for doing all necessary

testing for the customer’s applications and products using NXP

Semiconductors products in order to avoid a default of the applications and

the products or of the application or use by customer’s third party

customer(s). NXP does not accept any liability in this respect.

Export control — This document as well as the item(s) described herein

may be subject to export control regulations. Export might require a prior

authorization from competent authorities.

Evaluation products — This product is provided on an “as is” and “with all

faults” basis for evaluation purposes only. NXP Semiconductors, its affiliates

and their suppliers expressly disclaim all warranties, whether express,

implied or statutory, including but not limited to the implied warranties of non-

infringement, merchantability and fitness for a particular purpose. The entire

risk as to the quality, or arising out of the use or performance, of this product

remains with customer.

In no event shall NXP Semiconductors, its affiliates or their suppliers be

liable to customer for any special, indirect, consequential, punitive or

incidental damages (including without limitation damages for loss of

business, business interruption, loss of use, loss of data or information, and

the like) arising out the use of or inability to use the product, whether or not

based on tort (including negligence), strict liability, breach of contract, breach

of warranty or any other theory, even if advised of the possibility of such

damages.

Notwithstanding any damages that customer might incur for any reason

whatsoever (including without limitation, all damages referenced above and

all direct or general damages), the entire liability of NXP Semiconductors, its

affiliates and their suppliers and customer’s exclusive remedy for all of the

foregoing shall be limited to actual damages incurred by customer based on

reasonable reliance up to the greater of the amount actually paid by

customer for the product or five dollars (US$5.00). The foregoing limitations,

exclusions and disclaimers shall apply to the maximum extent permitted by

applicable law, even if any remedy fails of its essential purpose.

22.3 Trademarks
Notice: All referenced brands, product names, service names and

trademarks are property of their respective owners.

NXP Semiconductors AN11538
 SCTimer/PWM Cookbook

 Please be aware that important notices concerning this document and the product(s)
described herein, have been included in the section 'Legal information'.

© NXP B.V. 2016. All rights reserved.

For more information, visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 21 March 2016

Document identifier: AN11538

23. Contents

1. Introduction ... 3
1.1 Overview .. 3
1.2 Terminology ... 4
1.3 Target hardware ... 6
2. Repetitive interrupt ... 7
2.1 Purpose .. 7
2.2 Configuration .. 7
3. Blinky match .. 8
3.1 Purpose .. 8
3.2 Configuration .. 8
3.3 Initialization code .. 9
4. Match toggle .. 10
4.1 Purpose .. 10
4.2 Configuration .. 10
4.3 Setting the SCTimer/PWM prescaler 11
4.4 Initialization code .. 11
4.5 Using the conflict resolution register 11
5. Using the SCTPLL ... 12
5.1 Purpose .. 12
5.2 Configuration .. 12
5.3 Set up the SCTPLL .. 12
5.4 Initialization code .. 13
6. Simple PWM ... 14
6.1 Purpose .. 14
6.2 Configuration .. 14
6.3 Configuration code ... 15
7. Center aligned PWM .. 16
7.1 Purpose .. 16
7.2 Configuration .. 16
7.3 Configuration code ... 17
7.4 Using bidirectional output control 18
8. Two-channel PWM ... 19
8.1 Purpose .. 19
8.2 Configuration .. 19
8.3 Red State diagram ... 19

8.4 Initialization code .. 20
9. PWM with deadtime ... 21
9.1 Purpose .. 21
9.2 Configuration .. 21
9.3 LPC15xx input processing unit 22
9.4 Initialization code .. 22
9.5 Adjusting the duty-cycle.................................... 23
9.6 Result ... 24
10. Match reload .. 26
10.1 Purpose .. 26
10.2 Configuration .. 26
10.3 Initialization code .. 26
10.4 Updating the reload values 26
11. Four-channel PWM .. 28
11.1 Purpose .. 28
11.2 Configuration .. 28
11.3 Design .. 28
11.4 Initialization code .. 29
11.5 Result ... 30
12. Decoding PWM .. 32
12.1 Purpose .. 32
12.2 Configuration .. 32
12.3 Design .. 33
12.4 Initialization code .. 34
13. RC5 transmission .. 35
13.1 Purpose .. 35
13.2 Configuration .. 35
13.3 Design .. 36
13.4 Result ... 36
14. RC5 receiving ... 37
14.1 Purpose .. 37
14.2 Configuration .. 37
14.3 Design .. 38
14.4 Initialization code .. 38
14.5 Result ... 38

NXP Semiconductors AN11538
 SCTimer/PWM Cookbook

 Please be aware that important notices concerning this document and the product(s)
described herein, have been included in the section 'Legal information'.

© NXP B.V. 2016. All rights reserved.

For more information, visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 21 March 2016

Document identifier: AN11538

15. SCTimer/PWM start_stop.................................. 40
15.1 Purpose .. 40
15.2 Configuration .. 40
15.3 Design .. 40
16. Input synchronization 41
17. Dithering... 42
17.1 Purpose .. 42
17.2 Configuration .. 42
17.3 Implementation ... 42
17.4 Result ... 43
18. WS2811 LED driver ... 44
18.1 Implementation ... 45
18.2 Configuration .. 46
18.2.1 Match registers ... 46
18.2.2 Inputs/outputs ... 46
18.2.3 States ... 46
18.2.4 Event details ... 47
18.3 Operation ... 48
18.3.1 Transmission of a block of frames 49
18.3.2 Interrupt handling ... 49
18.4 Result ... 49
19. WS2812 LED driver ... 51
19.1 Purpose .. 51
19.2 Configuration .. 51
19.3 Implementation ... 52
19.3.1 Match registers ... 52
19.3.2 Inputs/outputs ... 53
19.3.3 States ... 53
19.3.4 Event details ... 53
19.3.5 Interrupt handling ... 53
19.4 Result ... 53
20. PWM with 0 - 100% duty cycle 55
20.1 Purpose .. 55
20.2 Configuration .. 55
20.3 Configuration code ... 56
21. PWM at _L and _H ... 57
21.1 Purpose .. 57
21.2 Configuration .. 57
22. Legal information .. 59

22.1 Definitions ... 59
22.2 Disclaimers ... 59
22.3 Trademarks .. 59
23. Contents ... 60

	1. Introduction
	1.1 Overview
	1.2 Terminology
	1.3 Target hardware

	2. Repetitive interrupt
	2.1 Purpose
	2.2 Configuration

	3. Blinky match
	3.1 Purpose
	3.2 Configuration
	3.3 Initialization code

	4. Match toggle
	4.1 Purpose
	4.2 Configuration
	4.3 Setting the SCTimer/PWM prescaler
	4.4 Initialization code
	4.5 Using the conflict resolution register

	5. Using the SCTPLL
	5.1 Purpose
	5.2 Configuration
	5.3 Set up the SCTPLL
	5.4 Initialization code

	6. Simple PWM
	6.1 Purpose
	6.2 Configuration
	6.3 Configuration code

	7. Center aligned PWM
	7.1 Purpose
	7.2 Configuration
	7.3 Configuration code
	7.4 Using bidirectional output control

	8. Two-channel PWM
	8.1 Purpose
	8.2 Configuration
	8.3 Red State diagram
	8.4 Initialization code

	9. PWM with deadtime
	9.1 Purpose
	9.2 Configuration
	9.3 LPC15xx input processing unit
	9.4 Initialization code
	9.5 Adjusting the duty-cycle
	9.6 Result

	10. Match reload
	10.1 Purpose
	10.2 Configuration
	10.3 Initialization code
	10.4 Updating the reload values

	11. Four-channel PWM
	11.1 Purpose
	11.2 Configuration
	11.3 Design
	11.4 Initialization code
	11.5 Result

	12. Decoding PWM
	12.1 Purpose
	12.2 Configuration
	12.3 Design
	12.4 Initialization code

	13. RC5 transmission
	13.1 Purpose
	13.2 Configuration
	13.3 Design
	13.4 Result

	14. RC5 receiving
	14.1 Purpose
	14.2 Configuration
	14.3 Design
	14.4 Initialization code
	14.5 Result

	15. SCTimer/PWM start_stop
	15.1 Purpose
	15.2 Configuration
	15.3 Design

	16. Input synchronization
	17. Dithering
	17.1 Purpose
	17.2 Configuration
	17.3 Implementation
	17.4 Result

	18. WS2811 LED driver
	18.1 Implementation
	18.2 Configuration
	18.2.1 Match registers
	18.2.2 Inputs/outputs
	18.2.3 States
	18.2.4 Event details

	18.3 Operation
	18.3.1 Transmission of a block of frames
	18.3.2 Interrupt handling

	18.4 Result

	19. WS2812 LED driver
	19.1 Purpose
	19.2 Configuration
	19.3 Implementation
	19.3.1 Match registers
	19.3.2 Inputs/outputs
	19.3.3 States
	19.3.4 Event details
	19.3.5 Interrupt handling

	19.4 Result

	20. PWM with 0 - 100% duty cycle
	20.1 Purpose
	20.2 Configuration
	20.3 Configuration code

	21. PWM at _L and _H
	21.1 Purpose
	21.2 Configuration

	22. Legal information
	22.1 Definitions
	22.2 Disclaimers
	22.3 Trademarks

	23. Contents

