

 AN11333
Interrupt handling during IAP calls for LPC177x_8x and
LPC407x_8x
Rev. 1 — 13 January 2014 Application note

Document information
Info Content
Keywords IAP Interrupt IAP LPC177x_8x LPC407x_8x Cortex-M3 Cortex-M4

Abstract This application note explains how interrupts can be handled when an
IAP call is in process with NXP’s Cortex 32-bit LPC407x_8x and
LPC177x_8x MCU families

NXP Semiconductors AN11333
 Interrupt handling during IAP calls for LPC177x_8x and LPC407x_8x

AN11333 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note Rev. 1 — 13 January 2014 2 of 17

Contact information
For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Revision history
Rev Date Description
1 20140113 Initial version.

http://www.nxp.com/
mailto:salesaddresses@nxp.com

NXP Semiconductors AN11333
 Interrupt handling during IAP calls for LPC177x_8x and LPC407x_8x

AN11333 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note Rev. 1 — 13 January 2014 3 of 17

1. Introduction
NXP’s LPC Cortex-M0, Cortex-M3 and Cortex-M4 flash parts have a ROM boot loader
that controls initial operation after reset as well as provides the tools for programming the
on-chip flash memory.

There are two programming features built in the ROM boot loader for reprogramming the
on-chip flash. One feature is In-System Programming (ISP), which programs on-chip
flash through a UART serial port using the boot loader software. The other feature is In-
Application Programming (IAP), where the end-user’s application code can erase and
program the on-chip flash memory in a running system. This application note is focused
on how to handle interrupts during IAP calls on NXP’s LPC407x_8x and LPC177x_8x
MCU families.

The LPC177x_8x is part of NXP’s Cortex-M3 MCU family. The LPC407x_8x is part of the
Cortex-M4 MCU family based on an LPC177x_8x with Floating Point Unit (FPU)
enhancement and some additional peripherals like the NXP unique SPI Flash Interface
(SPIFI) and dual analog comparator unit. From a memory map and IAP application point
of view, these two devices are identical. The sample project provided with this application
note has configurations for the LPC1788 and LPC4088.

2. Interrupt during IAP
Immediately after the CPU is reset, the interrupt vectors are located at address 0. When
an IAP call is initiated, the boot loader will temporarily disable access to the user flash
data. The user flash address space is mapped to some configuration data that is needed
by IAP calls. Hence the original interrupt vector location does not contain the correct
interrupt vector. Therefore if an interrupt happens while an IAP call is in process, the
interrupt cannot be handled properly and the MCU will behave unpredictably. In some
cases, the part resets itself when the interrupt is handled incorrectly as demonstrated in
this application note.

The solution for the above issue is to relocate the interrupt vector table as well as the
interrupt service routine to the SRAM area. This applies to all current production NXP
flash parts that support IAP functionality. This application note provides examples on how
to implement this relocation on the LPC407x_8x and LPC177x_8x MCUs.

2.1 IAP call review
The IAP routine should be called with a word pointer in register r0 pointing to memory
(RAM) containing command code and parameters. The result from the IAP command is
returned in the table pointed to by register r1.

The IAP function could be called in the following way using C.

Define the IAP location entry point. For NXP Cortex M devices, bit 0 of the IAP location is
set.

#define IAP_LOCATION 0x1FFF1FF1

Define data structure or pointers to pass IAP command table and result table to the IAP
function:

unsigned int command_param[5];
unsigned int status_result[5];

Or

NXP Semiconductors AN11333
 Interrupt handling during IAP calls for LPC177x_8x and LPC407x_8x

AN11333 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note Rev. 1 — 13 January 2014 4 of 17

unsigned int * command_param;
unsigned int* status_result;
command_param = (unsigned long *) 0x…
status_result = (unsigned long *) 0x…

Define a pointer to function type, which takes two parameters and returns void. The IAP
returns the result with the base address of the table residing in r1.

Typedef void (*IAP) (unsigned int [], unsigned int []);
IAP iap_entry;
Setting the function pointer:
Iap_entry = (IAP) IAP_LOCATION;

Whenever you wish to call IAP you could use the following statement.
Iap_entry (command_param, status_result).

Fig 1 lists the available IAP commands:

Fig 1. IAP commands

2.2 Interrupt vector table review
The interrupt vector table associates an interrupt handler with an interrupt request. When
the CPU is interrupted, it looks up the interrupt handler in the interrupt vector table and
transfers control to it.

After initial boot, the Cortex-M microcontroller’s interrupt vector table is located at 0x00.
For Cortex-M3 and Cortex-M4, ARM incorporates a Vector Table Offset Register (VTOR)
that allows remapping the interrupt vector table to alternative locations in the memory
map. This mechanism, as well as its usage in the interrupt handling, is introduced in
section 2.3. This application note provides sample code that implements interrupt
handling utilizing a VTOR register.

The VTOR register is not available in the Cortex-M0 architecture. Interrupt handling
during IAP calls for these MCUs is described in other dedicated application notes. For
NXP’s LPC4300 and LPC1800 MCU families, NXP introduced a set of MEMMAP
registers that can define the shadow address when accessing memory at address 0x00.
Interrupt handling during IAP calls using these registers is described in other dedicated
application notes.

NXP Semiconductors AN11333
 Interrupt handling during IAP calls for LPC177x_8x and LPC407x_8x

AN11333 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note Rev. 1 — 13 January 2014 5 of 17

2.3 Vector table offset register for Cortex-M3 and Cortex-M4
The Cortex-M3 and Cortex-M4 architecture incorporates a mechanism that allows
remapping the interrupt vector table to alternative locations in the memory map. This is
controlled via the VTOR located at 0xE00ED08 in the system control block.

The vector table may be relocated anywhere within the bottom 1 GB of address space.
The VTOR indicates the offset of the vector table base address from memory address
0x00000000.

Fig 2. VTOR bit assignments

When setting TBLOFF, you must align the offset to the number of exception entries in the
vector table. As there are less than 64 vectors for LPC177x_8x and LPC407x_8x, an
alignment of 256 bytes is sufficient.

2.4 Sample project implementation
The sample projects are provided based on Keil and LPCXpresso tool chain. The Keil
version is located at folder
\SampleProject_AN_InterruptDuringIAPCalls\Keil\Examples\IAP\.

See Fig 3 for the subfolder contents.

NXP Semiconductors AN11333
 Interrupt handling during IAP calls for LPC177x_8x and LPC407x_8x

AN11333 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note Rev. 1 — 13 January 2014 6 of 17

Fig 3. Keil example projects

• InterruptDisabled_DuringIAPCalls is the sample project where no interrupt is
enabled during IAP calls. This serves as a baseline of discussion.

• InterruptFails_DuringIAPCalls is the sample project where the System tick timer
interrupt is enabled during IAP Calls. This serves as a statement of the problem
to be solved.

• InterruptWorks_DuringIAPCalls is the sample project where the System tick
timer interrupt vector as well as its service routine is relocated to internal SRAM.

All three Keil sample projects are tested on Embedded Artists’ developer’s kit for
LPC1788 and LPC4088.

The LPCXpresso based sample projects are packed in
\SampleProject_AN_InterruptDuringIAPCalls\LPCXpresso.zip. You can import the project
to a folder of your choice. After import, the folder contains the contents shown in Fig 4.

NXP Semiconductors AN11333
 Interrupt handling during IAP calls for LPC177x_8x and LPC407x_8x

AN11333 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note Rev. 1 — 13 January 2014 7 of 17

Fig 4. LPCXpresso example projects

Some of the projects are device and board support packages. The rest of the projects
starting with “EAxxxx” are sample projects that perform the same tasks as the three Keil
projects. These sample projects are our focus in this application note. The names of the
projects clearly indicate whether they are for LPC1788 or LPC4088.

These sample projects share a common system flow. After the part boots up, it initializes
UART0 to communicate processes happening in the system. Afterwards, they will enter
the while (1) loop to repeatedly perform some flash erase, program and compare IAP
calls.

On both LPC4088 and LPC1788 Embedded Artists’ development kit, a USB cable needs
to be connected from J25 to a USB port on the PC to enable UART0 debug output on a
serial terminal (Tera Term is used for the verification of the sample projects). All steps
described in this application note should work on any PCB board with the LPC177x_8x or
LPC407x_8x part that has a UART0 port integrated with a RS232 interface.

The following sections explain how these three projects relate to each other and deliver
the method of interrupt handling during IAP calls.

2.4.1 Interrupt disabled during IAP calls
Fig 4 is the flow chart of project “InterruptDisabled_DuringIAPCalls”. Here we establish a
base line where the IAP calls are properly carried out without any disturbance from
interrupt calls.

NXP Semiconductors AN11333
 Interrupt handling during IAP calls for LPC177x_8x and LPC407x_8x

AN11333 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note Rev. 1 — 13 January 2014 8 of 17

Fig 5. Flow chart: Interrupt disabled during IAP calls

Fig 6 is a snip of the debug output printed on the Tera Term. The read part ID, Boot
Code, UID, erase and program IAP calls repeat smoothly.

2.4.2 Interrupt failed during IAP calls
The flow chart for project “InterruptFailed_DuringIAPCalls” is described in Fig 7. The red
blocks are added functionalities compared with project
“InterruptDisabled_DuringIAPCalls”.

NXP Semiconductors AN11333
 Interrupt handling during IAP calls for LPC177x_8x and LPC407x_8x

AN11333 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note Rev. 1 — 13 January 2014 9 of 17

Fig 6. Tera Term output: IAP with no interrupt enabled

NXP Semiconductors AN11333
 Interrupt handling during IAP calls for LPC177x_8x and LPC407x_8x

AN11333 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note Rev. 1 — 13 January 2014 10 of 17

Fig 7. Flow chart: Interrupt failed during IAP calls

This project enables a 1 ms system tick timer interrupt that runs concurrently with all the
IAP calls that are happening in the main while(1) loop. When the interrupt vector is
fetched in the middle of an IAP call, the interrupt is not properly handled by the
microcontroller. In this case, the microcontroller will reset as indicated by the debug
output “!! Part Reset, Repeated Reset Means IAP Call Error Happened!!” as shown in Fig
8.

NXP Semiconductors AN11333
 Interrupt handling during IAP calls for LPC177x_8x and LPC407x_8x

AN11333 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note Rev. 1 — 13 January 2014 11 of 17

Fig 8. System timer tick interrupt is not properly handled during IAP calls

2.4.3 Interrupt works during IAP calls
Project “InterruptWorks_DuringIAPCalls” relocates the system tick timer interrupt vector
table and the corresponding interrupt service routine to internal SRAM location. Then it
temporarily maps VTOR to the new SRAM location before the IAP calls starts. After this,
when the system tick timer interrupt happens, the CPU can still fetch the correct address
of the interrupt service routine and take care of the interrupt. Fig 9 is the flow chart that
details the execution sequence of the major events. The green blocks are added or
modified functionalities compared with project “InterruptFailed_DuringICAPCalls”.

NXP Semiconductors AN11333
 Interrupt handling during IAP calls for LPC177x_8x and LPC407x_8x

AN11333 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note Rev. 1 — 13 January 2014 12 of 17

Fig 9. Flow Chart: Interrupt Works during IAP Calls

The methods of relocating the interrupt vector table and the corresponding interrupt
service are detailed in section 2.4.3.1 and 2.4.3.2.

2.4.3.1 Relocate the interrupt vector table

The new vector table location is picked to be at 0x10008000. The following routine can
relocate a particular interrupt vector. Notice that the interrupt number for the system tick
timer is number 15.

#define SYSTICK_INT 15
volatile uint32_t int_vector_table[64] __attribute__((at(0x10008000)));
void init_interrupt_controller(int IntToBeReAllocated)

NXP Semiconductors AN11333
 Interrupt handling during IAP calls for LPC177x_8x and LPC407x_8x

AN11333 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note Rev. 1 — 13 January 2014 13 of 17

{
 volatile const uint32_t *org_table = 0x00000000;
 int_vector_table[IntToBeAllocated]=org_table[IntToBeAllocated];
 }

With the above definition, the following function call will relocate the system tick timer
interrupt to 0x10008000+15*4. Notice that the SYSTICK interrupt number is 15 and only
this SYSTICK interrupt is relocated the SRAM with other interrupt stays at 0x0.

init_interrupt_controller(SYSTICK_INT);

Next we modify the Vector Table Offset Register to point to the new location.
SCB->VTOR = 0x10008000;

Notice that after the IAP routines are finished, we reset the VTOR to its original location
and allow the system to enable other interrupts when needed.

SCB->VTOR = 0x00;

2.4.3.2 Relocate the interrupt vector routine

There are two .c files that are related with the interrupt service routine: lpc_systick.c and
IntRoutine.c. Using the Keil compiler, the interrupt routines are easily relocated.

Fig 10. Relocate the interrupt service routines (.sct file)

Fig 11 shows the memory mapping of the I-Code and D-code memory space of the
512kB LPC177x_8x and LPC407x_8x flash part. Notice that the interrupt vector table
and interrupt service handler are relocated from flash to RAM.

NXP Semiconductors AN11333
 Interrupt handling during IAP calls for LPC177x_8x and LPC407x_8x

AN11333 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note Rev. 1 — 13 January 2014 14 of 17

Fig 11. I Code and D Code memory space (LPC407x_8x and LPC177x_8x 512 kB flash
part)

2.4.3.3 Demonstration of successful interrupt handling during IAP calls

 After relocating the interrupt vector table as well as the interrupt service routine, the
system timer tick interrupts are handled properly with the same outputs on Tera Term as
shown in Fig 6. One thing to note is that the group of IAP calls proceeds more slowly
compared to the system tick timer interrupts being disabled. This is due to the 1 ms
interval interrupt for the CPU to handle besides the IAP calls.

3. Conclusion
This application note provides example implementation for interrupt handling when IAP
calls could happen concurrently. Following the steps explained in this application note,
critical interrupts do not need to be disabled when IAP calls are carried out. This
improves embedded system design flexibility with NXP’s microcontrollers. Although the
sample projects are based on LPC407x_8x and LPC177x_8x, the same steps are
applicable to other Cortex-M3 and Cortex-M4 NXP MCU families.

NXP Semiconductors AN11333
 Interrupt handling during IAP calls for LPC177x_8x and LPC407x_8x

AN11333 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note Rev. 1 — 13 January 2014 15 of 17

4. Legal information

4.1 Definitions
Draft — The document is a draft version only. The content is still under
internal review and subject to formal approval, which may result in
modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included herein and shall have no liability for the consequences
of use of such information.

4.2 Disclaimers
Limited warranty and liability — Information in this document is believed to
be accurate and reliable. However, NXP Semiconductors does not give any
representations or warranties, expressed or implied, as to the accuracy or
completeness of such information and shall have no liability for the
consequences of use of such information. NXP Semiconductors takes no
responsibility for the content in this document if provided by an information
source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation -
lost profits, lost savings, business interruption, costs related to the removal
or replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability
towards customer for the products described herein shall be limited in
accordance with the Terms and conditions of commercial sale of NXP
Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make
changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in life support, life-critical or
safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors and its suppliers accept no liability for
inclusion and/or use of NXP Semiconductors products in such equipment or
applications and therefore such inclusion and/or use is at the customer’s
own risk.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.

Customers are responsible for the design and operation of their applications
and products using NXP Semiconductors products, and NXP

Semiconductors accepts no liability for any assistance with applications or
customer product design. It is customer’s sole responsibility to determine
whether the NXP Semiconductors product is suitable and fit for the
customer’s applications and products planned, as well as for the planned
application and use of customer’s third party customer(s). Customers should
provide appropriate design and operating safeguards to minimize the risks
associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default in the
customer’s applications or products, or the application or use by customer’s
third party customer(s). Customer is responsible for doing all necessary
testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications and
the products or of the application or use by customer’s third party
customer(s). NXP does not accept any liability in this respect.

Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from competent authorities.

Evaluation products — This product is provided on an “as is” and “with all
faults” basis for evaluation purposes only. NXP Semiconductors, its affiliates
and their suppliers expressly disclaim all warranties, whether express,
implied or statutory, including but not limited to the implied warranties of non-
infringement, merchantability and fitness for a particular purpose. The entire
risk as to the quality, or arising out of the use or performance, of this product
remains with customer.

In no event shall NXP Semiconductors, its affiliates or their suppliers be
liable to customer for any special, indirect, consequential, punitive or
incidental damages (including without limitation damages for loss of
business, business interruption, loss of use, loss of data or information, and
the like) arising out the use of or inability to use the product, whether or not
based on tort (including negligence), strict liability, breach of contract, breach
of warranty or any other theory, even if advised of the possibility of such
damages.

Notwithstanding any damages that customer might incur for any reason
whatsoever (including without limitation, all damages referenced above and
all direct or general damages), the entire liability of NXP Semiconductors, its
affiliates and their suppliers and customer’s exclusive remedy for all of the
foregoing shall be limited to actual damages incurred by customer based on
reasonable reliance up to the greater of the amount actually paid by
customer for the product or five dollars (US$5.00). The foregoing limitations,
exclusions and disclaimers shall apply to the maximum extent permitted by
applicable law, even if any remedy fails of its essential purpose.

4.3 Trademarks
Notice: All referenced brands, product names, service names and
trademarks are property of their respective owners.

NXP Semiconductors AN11333
 Interrupt handling during IAP calls for LPC177x_8x and LPC407x_8x

AN11333 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note Rev. 1 — 13 January 2014 16 of 17

5. List of figures

Fig 1. IAP commands .. 4
Fig 2. VTOR bit assignments 5
Fig 3. Keil example projects .. 6
Fig 4. LPCXpresso example projects 7
Fig 5. Flow chart: Interrupt disabled during IAP calls .. 8
Fig 6. Tera Term output: IAP with no interrupt enabled

 .. 9
Fig 7. Flow chart: Interrupt failed during IAP calls 10
Fig 8. System timer tick interrupt is not properly

handled during IAP calls 11
Fig 9. Flow Chart: Interrupt Works during IAP Calls .. 12
Fig 10. Relocate the interrupt service routines (.sct file)

 .. 13
Fig 11. I Code and D Code Memory Space

(LPC407x_8x and LPC177x_8x 512kB flash
part) .. 14

NXP Semiconductors AN11333
 Interrupt Handling During IAP Calls

 Please be aware that important notices concerning this document and the product(s)
described herein, have been included in the section 'Legal information'.

© NXP B.V. 2014. All rights reserved.

For more information, visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 13 January 2014
Document identifier: AN11333

6. Contents

1. Introduction ... 3
2. Interrupt during IAP .. 3
2.1 IAP call review .. 3
2.2 Interrupt vector table review 4
2.3 Vector table offset register for Cortex-M3 and

Cortex-M4 .. 5
2.4 Sample project implementation 5
2.4.1 Interrupt disabled during IAP calls 7
2.4.2 Interrupt failed during IAP calls 8
2.4.3 Interrupt works during IAP calls 11
2.4.3.1 Relocate the interrupt vector table 12
2.4.3.2 Relocate the interrupt vector routine 13
2.4.3.3 Demonstration of successful interrupt handling

during IAP calls .. 14
3. Conclusion ... 14
4. Legal information .. 15
4.1 Definitions .. 15
4.2 Disclaimers ... 15
4.3 Trademarks .. 15
5. List of figures ... 16
6. Contents ... 17

	1. Introduction
	2. Interrupt during IAP
	2.1 IAP call review
	2.2 Interrupt vector table review
	2.3 Vector table offset register for Cortex-M3 and Cortex-M4
	2.4 Sample project implementation
	2.4.1 Interrupt disabled during IAP calls
	2.4.2 Interrupt failed during IAP calls
	2.4.3 Interrupt works during IAP calls
	2.4.3.1 Relocate the interrupt vector table
	2.4.3.2 Relocate the interrupt vector routine
	2.4.3.3 Demonstration of successful interrupt handling during IAP calls

	3. Conclusion
	4. Legal information
	4.1 Definitions
	4.2 Disclaimers
	4.3 Trademarks

	5. List of figures
	6. Contents

