NTAG 5 - Use of PWM, GPIO and event detection Rev. 1.2 — 9 January 2020

530212

Application note COMPANY PUBLIC

Document information

Information	Content
Keywords	GPIO, PWM, event detection, NTAG 5 switch, NTAG 5 link, NTAG 5 boost, ISO/IEC 15693, NFC Forum Type 5 Tag
	Guidelines for designing applications using general-purpose input/output, pulse width modulation and event detection capabilities.

Revision history

Rev	Date	Description	
1.2	20200109	First official released version	
1.1	20190923	Section 2 updated	
1.0	20190917	Initial version	

NTAG 5 - Use of PWM, GPIO and event detection

1 Abbreviations

Table 1. Abbre	Table 1. Abbreviations				
Acronym	Description				
~	Weak approximation (mathematical)				
ALM	Active Load Modulation				
ED	Event Detection				
GPIO	General Purpose Input/Output				
IC	Integrated Circuit				
I ² C	Inter-Integrated Circuit				
MCU	Microcontroller Unit				
POR	Power On Reset				
PLM	Passive Load Modulation				
PWM	Pulse Width Modulation				
VCD	Vicinity Coupling Device				
VICC	Vicinity Integrated Circuit Card				

2 Introduction

This document describes GPIO and PWM capabilities of NTAG 5 family ICs. The NTAG 5 provides the capability to harvest energy from the RF field, to use pins as GPIOs or to use them as PWM output channels. On top, event detection pin can be configured to notify peripheral devices on many RF events. This document focuses on showing, how to configure the IC for different use cases.

Important note 1: For GPIO, PWM functionalities, V_{CC} supply is mandatory. If functionality is configured but not working, status register A0h can be checked for VCC_SUPPLY_OK and VCC_BOOT_OK bits if set to 1b.

<u>Important note 2</u>: The Event Detection (ED) pin functionality is operated via the RF field power, the NTAG 5 VCC supply is not required. Only for pulse width modulation use case on ED pin, V_{CC} is a must.

In case of energy harvesting mode, note that signal on GPIO pins is available about 3 ms after NFC field is applied. For more details on energy harvesting, see [Application Note].

2.1 Potential applications

- Control PWM duty cycle, frequency over NFC, without an MCU
- · Calibrate devices automatically without an MCU
- Verify the authenticity of the device through the value chain
- · Calibrate the reference current without an MCU, or control and dim LEDs
- · Use a cloud connection to enable new features, or power and configure a motor or LED

2.2 Configuration registers

After POR the configuration registers data available in EEPROM will be loaded into session registers.

2.3 Session registers

In the current session, the ICs behavior can be monitored and configured by writing into session registers. Access to session registers may be password protected.

2.4 Weak pull-up/pull-down

NTAG 5 IC has possibility to configure IO pins in the way to avoid floating state of the pin. NTAG 5 IC has a built-in a high value resistor, which can be enabled/disabled. Weak pull-up/pull-down means high value resistance, consequently less current flows.

Output driver of the cell is the push-pull kind of structure. Pull-up driver is created by PMOS and pull-down driver is created by NMOS. Receiver with (50 ns) spike filter. In case of external IO driver, in order to save power, disable the weak pull-up/down.

Low-pass filter (LPF) is implemented to cope with bouncing effects.

3 GPIO functionality

NTAG 5 may serve as a simple GPIO device, instead of need of external devices, e.g., MCU. There are two (2) pins that can be configured for GPIO purposes. These pins are also multiplexed with PWM functionality so both functionalities cannot exist at the same time - **PWM and GPIO features** on the same pin **cannot be combined**.

Configuration of GPIO functionality is located in user configuration memory [CONFIG_2 \rightarrow address 37h]. Access to this memory area is only possible with READ_CONFIG and WRITE_CONFIG commands from RF perspective and normal read and write commands from l²C perspective, but l²C interface is not available if pins are used as GPIOs.

The pins can be configured either as:

- Input mode: the status of the pad is available in one of the session register bits [GPIO1_PAD_OUT_STATUS, GPIO0_PAD_OUT_STATUS, GPIO1_PAD_IN_STATUS, GPIO0_PAD_IN_STATUS]
- Output mode

After POR, then the pads are configured accordingly as per the configuration bits. During ongoing session, the update to GPIO configuration registers takes immediate effect.

At POR, the GPIO is set to High-Impedance state. Also the receiver mode of the pad is disabled. After NTAG 5 comes out of reset and reads configuration, the pad selection pins are controlled to behave as per the configuration.

GPIO can be configured by setting below properties:

- Input
 - Disabled (High-impedance in GPIO / I²C mode)
 - Plain input with weak pull-up
 - Plain input (floating)
 - Plain input with weak pull-down
- Output
 - High
 - Low
- Slew rate

3.1 GPIO Registers location

Table 2. PWM and GPIO Configuration Location (PWM_GPIO_CONFIG)

	Block Address		Byte 0	Byte 1	Byte 2	Byte 3
NFC I ² C		I ² C	Byte	Dyte	Dyte 2	Dyte 5
	39h	1039h	PWM_GPIO_ CONFIG_0	PWM_GPIO_ CONFIG_1	RFU	

Table 3. PWM and GPIO Configuration Definition (PWM_GPIO_CONFIG_0)

Bit	Name	Value	Description
7	SDA GPIO1 OUT STATUS	0b	Output status on pad is LOW (default)
	SDA_GPIOT_OUT_STATUS	1b	Output status on pad is HIGH

© NXP B.V. 2020. All rights reserved

AN11203

NXP Semiconductors

AN11203

NTAG 5 - Use of PWM, GPIO and event detection

Bit	Name	Value	Description
6	SCL GPIO0 OUT STATUS	0b	Output status on pad is LOW (default)
0	30L_0F100_001_31A103	1b	Output status on pad is HIGH
5 to 4	RFU	00b	
3	SDA_GPIO1	0b	Output (Default)
5		1b	Input
2	SCL_GPIO0	0b	Output (Default)
2		1b	Input
1		0b	GPIO (Default)
	SDA_GPIO1_PWM1	1b	PWM
0		0b	GPIO (Default)
0	SCL_GPIO0_PWM0	1b	PWM

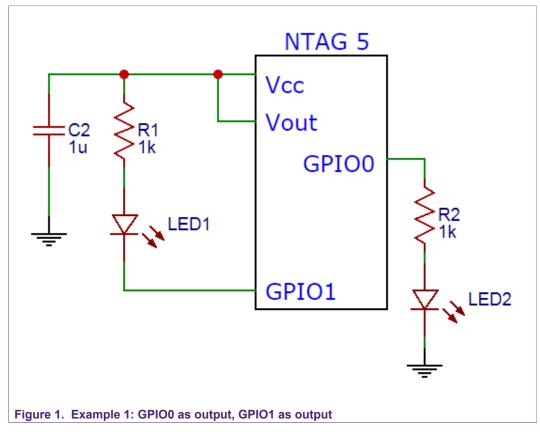
Table 4. PWM and GPIO Configuration Definition (PWM_GPIO_CONFIG_1 and PWM_GPIO_CONFIG_1_REG)

Bit	Name		Description
7	PWM1_PRESCALE	00b	Pre-scalar configuration for PWM1 channel
6	FWMT_FRESCALE	000	(default 00b)
5 4	PWM0 PRESCALE	00b	Pre-scalar configuration for PWM0 channel
	PWW0_PRESCALE	000	(default 00b)
3	PWM1_RESOLUTION_CONF	00b	6-bit resolution (default)
		01b	8-bit resolution
2		10b	10-bit resolution
2		11b	12-bit resolution
1	PWM0 RESOLUTION CONF	00b	6-bit resolution (default)
		01b	8-bit resolution
0		10b	10-bit resolution
0		11b	12-bit resolution

3.2 GPIO as Output

Each line can be configured independently from each other - e.g. one as GPIO Input, the other as GPIO Output.

Selection of GPIO (or PWM) depends on GPIO0_PWM0 and GPIO1_PWM1 configuration bits:


- GPIO0_PWM0 = 0b pad configured for GPIO (GPIO0_PWM0 = 1b pad configured for PWM)
- GPIO1_PWM1 = 0b pad configured for GPIO (GPIO1_PWM1 = 1b pad configured for PWM)

3.2.1 Example 1: GPIO0 as output, GPIO1 as output

3.2.1.1 Description

In this example, both GPIO pads are used as Outputs. Both pads will be set to 1b (HIGH), with effect that LED1 will be turned off, LED2 will be turned on.

3.2.1.2 Schematics

3.2.1.3 Configuration bytes

Table 5. PWM and GPIO Configuration bytes Location (PWM_GPIO_CONFIG_REG)

Block Address		Byte 0	Byte 1	Byte 2	Byte 3
NFC	Byte	Byter	Dyte 2	Byte 5	
A3h		C0	00	RFU	

3.2.1.4 RF command set

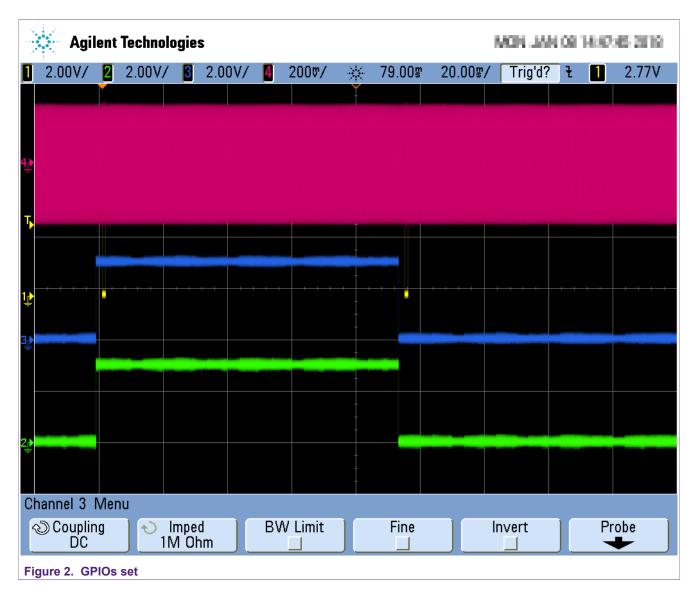

Response format as from <u>Table 7</u> is expected on reader side, meaning the Tag responds with ACK. This response is expected in all Examples within this document if not written differently.

Table 6. F	Fable 6. RF Command: VCD to VICC								
Flags	Command code	IC manuf. code	Block Address	Byte 0	Byte 1	Byte 2	Byte 3	CRC 0	CRC 1
02	C1	04	39	C0	00	00	00	12	F8

Table 7 RF Response: VICC to VCD - ACK

Table 7. IN Response. vioo to	VOD - AOK	
Flags	CRC 0	CRC 1
00	78	F0

3.2.1.5 Result

3.3 GPIO as Input

GPIO Input logic HIGH is considered as V_{IL} > 1.62 V.

All information provided in this document is subject to legal disclaimers.	
Rev. 1.2 — 9 January 2020	
530212	

AN11203

NTAG 5 - Use of PWM, GPIO and event detection

Status of GPIOs can be monitored in STATUS_REG:

- Address: A0h, Byte 0 and Byte1
 - Bit11: GPIO0_IN_STATUS:
 - 0b: GPIO0 input is LOW
 - 1b: GPIO0 input is HIGH
 - Bit12: GPIO1_IN_STATUS:
 - 0b: GPIO1 input is LOW
 - 1b: GPIO1 input is HIGH

3.3.1 Example 2: GPIO0 as INPUT

3.3.1.1 Description

In this example one of the GPIO pads - GPIO0 is used as Input. Status of (mechanical) switch, will be read out via RF interface. Capacitor value depends on final application.

GPIO0 pad will be configured as:

- GPIO0 SLEW RATE: 1b High-Speed GPIO
- GPIO0 IN: 01b Plain input with weak pull-up
- GPIO0_PWM0: 0b GPIO (Default)
- GPIO0: 1b Input
- GPIO0_IN_STATUS: 1b Enable input status, that will be reflected in Session register STATUS_REG, A0h.

3.3.1.2 Schematics

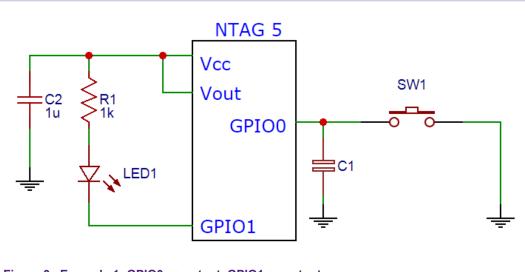


Figure 3. Example 1: GPIO0 as output, GPIO1 as output

3.3.1.3 Configuration bytes

Table 8. Configuration Bytes Location (CONFIG)

Block A	ddress	Byte 0	Byte 1	Byte 2	Byte 3
NFC	NFC	Byte	Byter	Byte 2	Dyte 5
37h		XX	2X	1X	00

© NXP B.V. 2020. All rights reserved.

Table 9. PWM and GPIO Configuration Bytes Location (PWM_GPIO_CONFIG)

Block A	Address	Byte 0	Byte 1	Byte 2	Byte 3	
NFC		Byte	Byter	Dyte 2	Byte 5	
39h	39h 14		00 00		00	

3.3.1.4 RF command set

Write to Configuration registers to configure:

Table 10. RF Command: VCD to VICC										
Flags	Command code	IC manuf. code	Block Address	Byte 0	Byte 1	Byte 2	Byte 3	CRC 0	CRC 1	
02	C1	04	37	00	20	1F	00	11	B7	
02	C1	04	39	14	00	00	00	86	72	

Read out GPIO0_INPUT_STATUS - Input pulled-high internally by "weak pull-up". Button **not pressed**:

Table 11. RF Command: VCD to VICC

Flags	Command code	IC manuf. code	Command code	Block Address	CRC 0	CRC 1
02	C0	04	A0	00	83	45

Table 12. RF Response: VICC to VCD

Flags	Byte 0	Byte 1	Byte 2	Byte 3	CRC 0	CRC 1
00	03	C <u>C</u>	00	00	41	83

Meaning:

Byte 1 = CCh -> Bit 3 is GPIO0_IN_STATUS = 1b (<u>GPIO0</u> input is <u>HIGH</u>).

Read out GPIO0_IN_STATUS - Input pulled to GND (button pressed):

Table 13. RF Response: VICC to VCD

Flags	Byte 0	Byte 1	Byte 2	Byte 3	CRC 0	CRC 1
00	03	C <u>4</u>	00	00	41	83

Byte 1 = C4h -> Bit 3 is GPIO0_IN_STATUS = 0b (GPIO0 input is LOW).

4 **PWM** functionality

The PWM output signal behavior can be configured independently with the help of configuration register. After configuration of PWM parameters and following POR, PWM will be available on pads as soon as V_{CC} will be applied.

Selection of PWM (or GPIO) depends on GPIO0_PWM0 and GIPO1_PWM1 configuration bits.

- USE_CASE_CONF [1:0] =10b
- GPIO0_PWM0 = 1b pad configured for PWM
- GPIO1_PWM1 = 1b pad configured for PWM

The ON time: PWM0_ON [11:0] or PWM1_ON [11:0]: Will be the time the PWM output will be asserted HIGH.

The OFF time: PWM0_OFF [11:0] or PWM1_OFF [11:0]: Will be the time when the PWM output will be de-asserted LOW.

By controlling the ON and OFF, phase shift becomes completely programmable. The resolution for the phase shift is $1/PWM_RESOLUTION_CONF$ of the input frequency.

If PWM_RESOLUTION_CONF is 12 bit, then the PWM timer is 12 bit and PWM_ON and OFF registers will be of 12-bit resolution.

If PWM_RESOLUTION_CONF is 10 bit, then the PWM timer is 10 bit and PWM_ON and OFF registers will be of 10-bit resolution.

The same applies for 8-bit and 6-bit resolution.

The internal PWM input clock frequency is 1.69 MHz.

4.1 PWM Registers location

Registers PWM_GPIO_CONFIG define the PWM/GPIO functionality. PWM-related registers can be found in <u>Section 3.1</u>.

4.2 PWM values calculation

Frequency

Frequency is defined by pre-scalar and resolution. Table of possible frequencies can be found in [datasheet].

Resolution

Defines the maximum number of pulses that can be available in the given PWM period, which depends on input clock frequency. Each PWM pin has its own configurable resolution.

12-bit resolution max. value 2^{12} = 4096 10-bit resolution max. value 2^{12} = 1024 8-bit resolution max. value 2^{12} = 256

6-bit resolution max. value 2^{12} = 64

Start time - PWMx_ON

The value (in HEX) to be set in registers, is calculated from desired period percentage. Therefore it depends on Frequency, Resolution. Calculated decimal values shall be rounded to nearest integer. PWM_ON value denotes the timing + 1.

Start time = $2^{Resolution} \times Percentage$

Table 14. Examples of few Resolution vs. Start Time percentage values - PWMx_ON calculation

•										
Percentag [%]	100		50		35		20		10	
Resolution [bit]	[d]	[HEX]	[d]	[HEX]	[d]	[HEX]	[d]	[HEX]	[d]	[HEX]
12	4096	0FFF	2048	07FF	1434	0599	819	0332	410	0199
10	1023	03FF	512	01FF	358	0165	205	00CC	102	0065
8	256	00FF	128	007F	90	0059	51	0032	26	0019
6	64	003F	32	001F	22	0015	13	000C	6	0005

PWM Duty Cycle - PWMx_OFF

The value (in HEX) to be set in registers is calculated from desired period percentage. Therefore it depends on Frequency, Resolution, PWMx_ON. Calculated decimal values shall be rounded to nearest integer. PWM_OFF value denotes the timing + 1. PWM_ON shall be summarized to PWM_OFF value.

4.3 Example 3: PWM0 and PWM1 as PWM Output

4.3.1 Description

In this example, both GPIO/PWM pads are used as PWM Outputs.

PWM0 pad

- resolution (PWM0_RESOLUTION_CONF): 6bit
- start time (PWM0_ON): 0 %
- PWM duty cycle (PWM0_OFF): 30 %

PWM1 pad

- resolution (PWM0_RESOLUTION_CONF): 6bit
- start time (PWM0_ON): 10 %
- PWM duty cycle (PWM0_OFF): 40 %

4.3.2 Registers values

Table 15. PWM and GPIO Configuration Bytes Location (PWM_GPIO_CONFIG)

Block A	ddress	Byte 0	Byte 1	Byte 2	Byte 3	
NFC	I ² C	Byte U	Dyter	Dyte 2	Byte 5	
39h	1039h	03	00	RFU		

Table 16. (PWM0_ON, PWM0_OFF, PWM1_ON, PWM1_OFF)

Block A	Address	Puto 0	Dute 4	Puto 2	Byte 3	
NFC	I ² C	Byte 0	Byte 1	Byte 2		
3Ah	103Ah	00h	00h	13h	00h	
3Ah	103Bh	06h	00h	1Fh	00h	

4.3.3 RF command set

Table	17.	RF	Command:	VCD t	o VICC
1 abio			oominana		

Flags	Command code	IC manuf. code	Block Address	Byte 0	Byte 1	Byte 2	Byte 3	CRC 0	CRC 1
02	C1	04	37	00	20	0F	00	80	22
02	C1	04	39	03	00	00	00	06	E6
02	C1	04	3A	00	00	13	00	FE	61
02	C1	04	3B	06	00	1F	00	80	88

4.3.4 Result

NTAG 5 - Use of PWM, GPIO and event detection

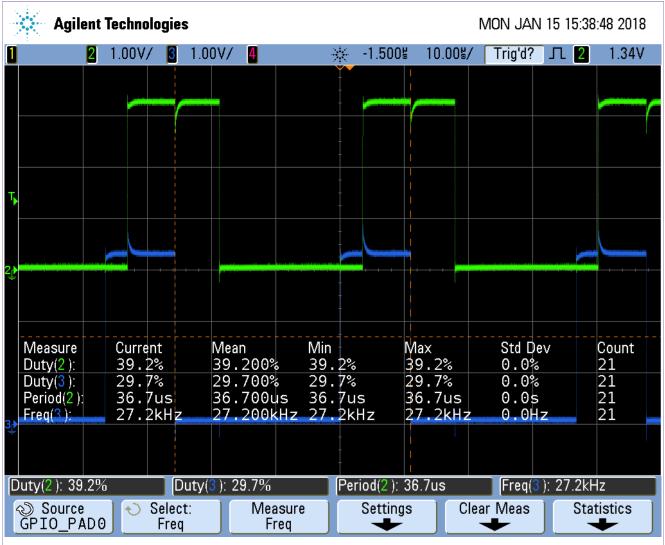


Figure 4. PWM Example 3: 6-bit resolution, PWM0 and PWM1 enabled as PWM Output

5 Event detection functionality

GPIO pins have push-pull architecture, **ED pin** is an **open-drain**, active low implementation. External pull-up resistor is required. This way, by default ED remains HIGH (Inactive) until one of the event detection conditions is *true*.

There are several events for ED pin to be triggered, depending on IC type. See data sheet [1] or [2] or [3] for more info.

- ED = ON means that external ED signal is pulled LOW
- ED = OFF means that external ED signal is released and HIGH

ED behavior can be controlled in two ways:

- ED can be configured to show the events inside the tag or
- · ED pin can be released by writing to clear register for the specific events

ED pin characteristics V_{OL} LOW-level output voltage, I_{OL} = 3 mA @ 0.4 V. I_{IED} leakage current = 0.3 mA to 10 mA, V_{IN} = 0 V to 5.5 V.

NOTE: Measurements are done in following conditions:

- RF
 - 1 out of 4 data coding
 - uplink/downlink data rate of 26.48 kbits/s (f_c/512)
- I²C data rate 400 kHz

5.1 Example 4 - NFC Field Detect

5.1.1 Description

ED pin can indicate presence of the NFC field - 13.56 MHz carrier frequency. Can be used in PLM and ALM modes.

ED=ON if field is switched ON.

ED=OFF if field is switched OFF.

5.1.2 Register values

ED_CONFIG(_REG) = 0001b

5.1.3 Results

NTAG 5 - Use of PWM, GPIO and event detection

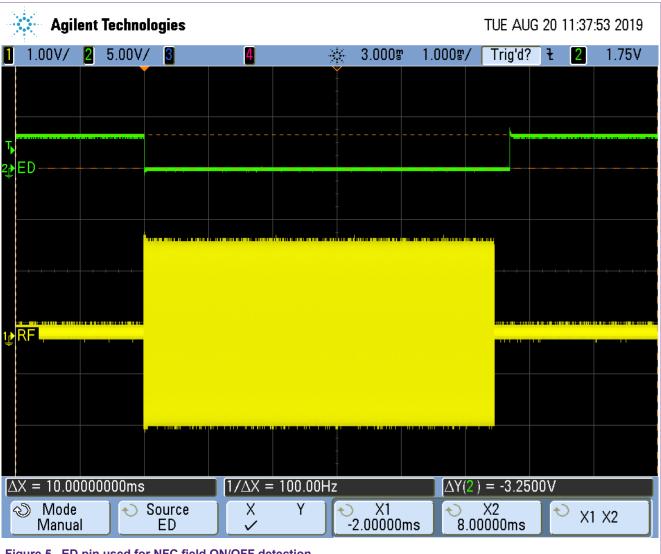


Figure 5. ED pin used for NFC field ON/OFF detection

NTAG 5 - Use of PWM, GPIO and event detection

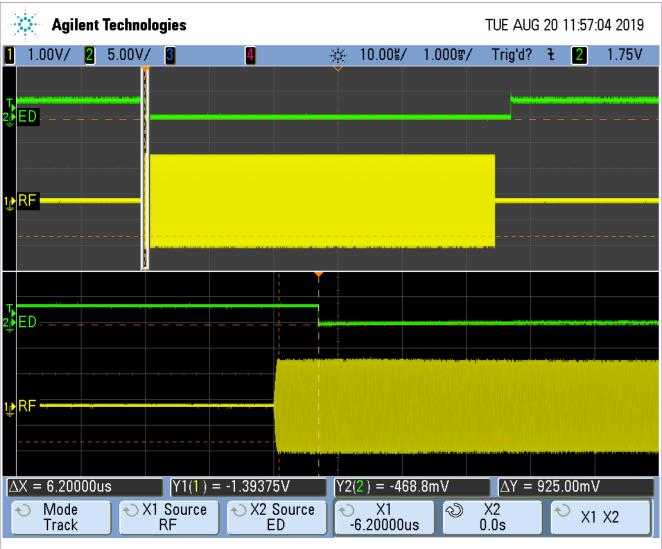


Figure 6. ED pin used for NFC field ON detection

ED pin is triggered (pulled LOW) ~6.2 µs after solid NFC field is present.

NTAG 5 - Use of PWM, GPIO and event detection

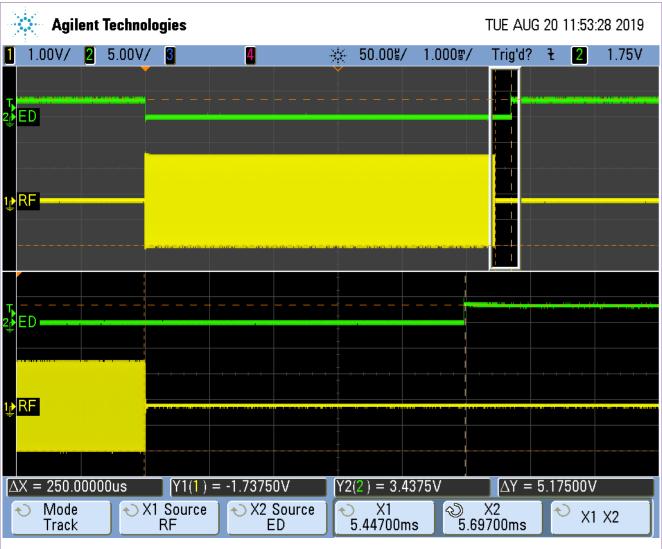


Figure 7. ED pin used for NFC field OFF detection

ED pin is released (transition to HIGH) ~250 μs after NFC field is turned-off / not present anymore.

5.2 Example 5 - PWM0 signal reflection on ED pin (PWM)

5.2.1 Description

ED pin can reflect PWM0 signal. PWM0 can be configured as PWM output on ED or SCL pin.

In following example the signal from GPIO0_PWM0 pin, duty cycle of it, is reflected to ED pin. Because ED pin is open-drain, it is pulled LOW during the OFF period of PWM0 signal.

5.2.2 Registers values

Table 18. ED_CONFIG_REG

Block A	Address	Byte 0	Byte 1	Byte 2	Byte 3	
NFC	I ² C	Byte U	Byte	Byte 2	Byte 5	
A8h	10A8h	02h	00h	00h	00h	

5.2.3 Result

NTAG 5 - Use of PWM, GPIO and event detection

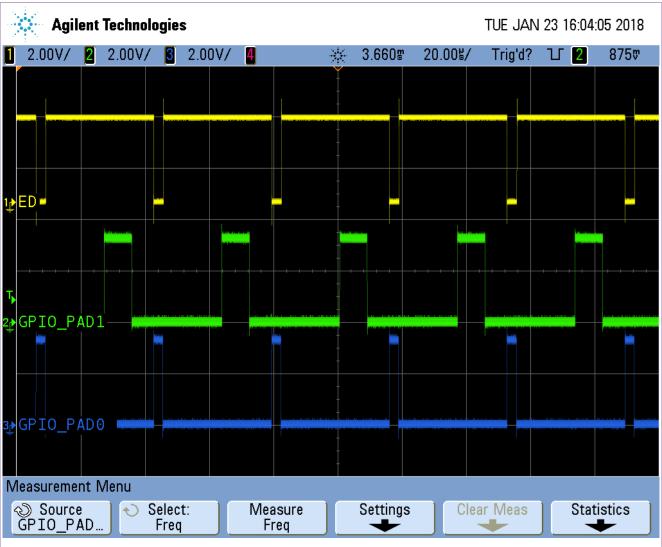


Figure 8. Example 5 - ED = ON during the off period of PWM0 signal

In above scope trace ED pin reflects the same PWM0 signal as the GPIO0 pad (named GPIO_PAD0).

5.3 Example 6 - $I^2C \rightarrow NFC$ Pass-through mode

5.3.1 Description

ED pin can be used to determine following states in Pass-through mode of operation:

- ED=ON: Last byte of SRAM data has been read by NFC, means host (I²C) can start writing data to the SRAM.
- ED=OFF:
 - Last byte written by I²C
 - or NFC is OFF or
 - I²C supply is OFF

5.3.2 Register values

ED_CONFIG(_REG) = 0011b

NTAG 5 - Use of PWM, GPIO and event detection

5.3.3 Results

Figure 9. I²C -> NFC in Pass-though mode, ED on

ED pin is triggered (pulled LOW) when VICC responds to the NFC reader with the last SRAM byte (3Fh). ~1.98 ms after EOF of VCD READ_SINGLE_BLOCK command received, before VICC's responds with CRC bytes.

Arbiter locks to I2C interface:

- NFC_IF_LOCKED = 0b
- I²C_IF_LOCKED = 1b
- SRAM_DATA_READY= 0b

 I^2C host can start writing new data to SRAM.

<u>Note</u>: Optionally I^2C host can poll for SRAM_DATA_READY= 0b instead of using ED pin in this configuration.

NTAG 5 - Use of PWM, GPIO and event detection

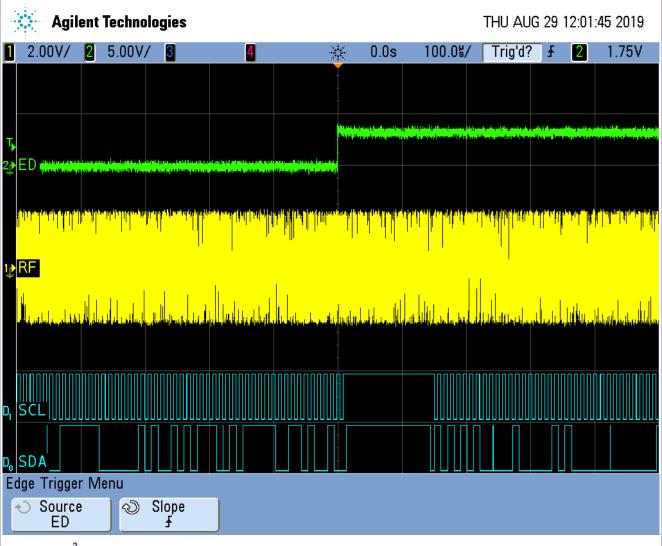


Figure 10. I²C -> NFC in Pass-though mode, ED off

ED pin is released (transition to HIGH) on the last I^2C (SCL) clock cycle - before NTAG's ACK, when the last byte of SRAM (203Fh) is written.

5.4 Example 7 - NFC \rightarrow I²C Pass-through mode

5.4.1 Description

ED pin can be used to determine following states:

- ED=ON: Last byte is written by NFC, meaning that host can read data from SRAM
- ED=OFF:
 - Last byte is read from I^2C
 - or NFC OFF
 - or I²C supply OFF

5.4.2 Register values

ED_CONFIG(_REG) = 0100b

5.4.3 Results

NTAG 5 - Use of PWM, GPIO and event detection

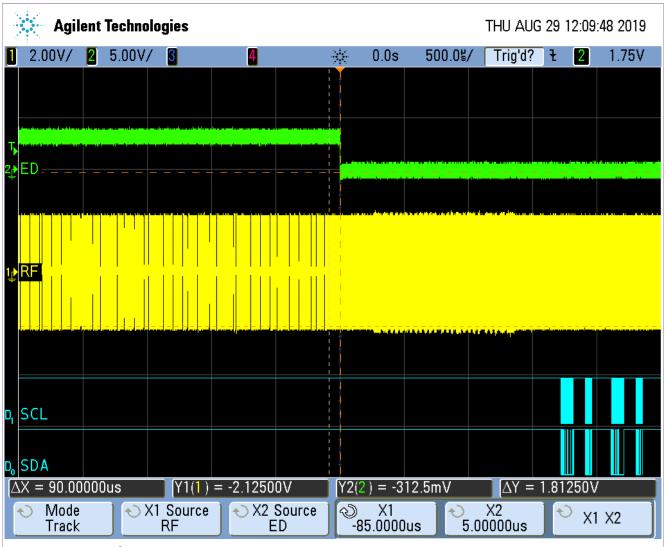


Figure 11. NFC \rightarrow I²C in Pass-though mode - Last byte written by NFC, host can read data from SRAM

ED pin is triggered (pulled LOW) when last SRAM byte (3Fh) is written by NFC. I²C host can start reading SRAM data ~90 μ s after VCD's EOF.

NTAG 5 - Use of PWM, GPIO and event detection

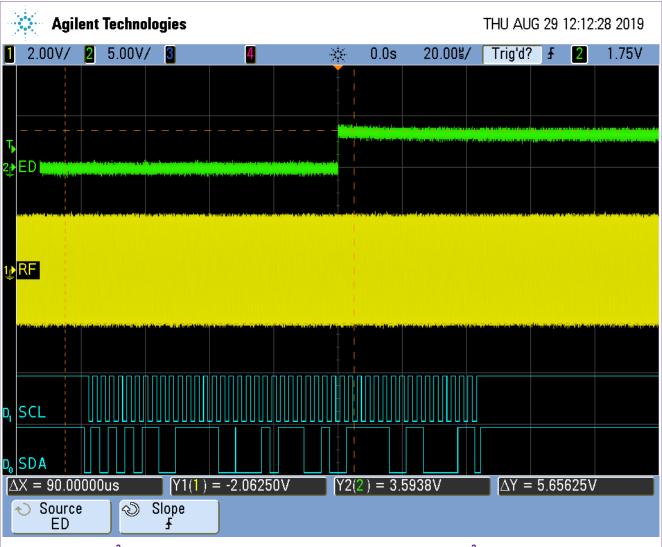


Figure 12. NFC \rightarrow I²C in Pass-though mode - Last byte has been read from host (I²C), or NFC off or Vcc off.

ED pin is released (transition to HIGH) when I^2C starts to read the last byte of SRAM (203Fh), with delay of ~90 µs.

5.5 Example 8 - Arbiter lock

5.5.1 Description

ED pin can be used also to determine whether Arbiter locked access for NFC interface or not.

- ED=ON: when NFC_IF_LOCKED =1b
- ED=OFF: when NFC_IF_LOCKED =0b

5.5.2 Register values

ED_CONFIG(_REG) = 0101b

5.5.3 Results

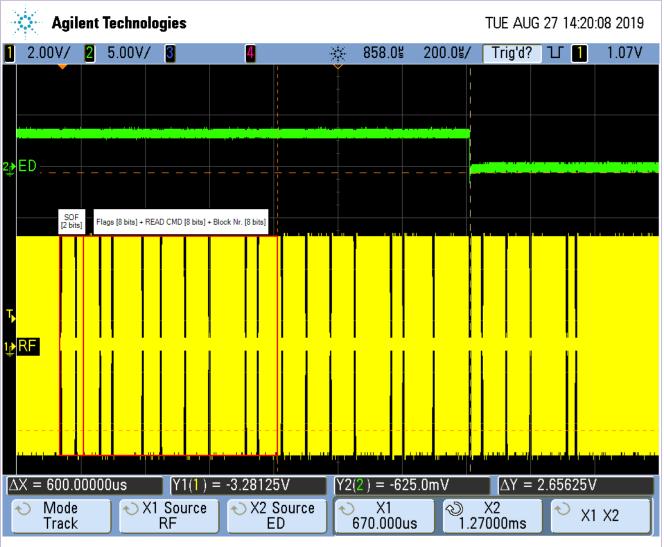


Figure 13. Arbiter locked access to NFC interface, ED on

AN11203 Application note COMPANY PUBLIC © NXP B.V. 2020. All rights reserved.

NTAG 5 - Use of PWM, GPIO and event detection

ED pin is triggered (pulled LOW) when Arbiter locks to NFC interface \sim 600 µs after NTAG recognizes READ command and Block number to be read.

ED pin is released (transition to HIGH) when Arbiter releases access to NFC ~92 μs after VCD's EOF.

5.6 Example 9 - NDEF Message TLV length

5.6.1 Description

ED pin can be used also to determine if NDEF data length is ZERO or NON ZERO. As defined in [T5T], chapter 7.5.3 NDEF Write Procedure, before writing Terminator TLV (0xFE), Length value (of TLV) shall be updated. L byte is on T5Ts always in Block1:Byte1. Host can be informed when this is done through ED pin. Use case can be NFC Forum defined TNEP [TNEP].

- ED=ON: when Block 1 byte 1 i.e. NDEF length byte is non-zero during write command.
 either:
 - ED=OFF when Block 1 byte 1 i.e. NDEF length byte is zero during write command
 NFC Field is OFF.

NOTE: Counting of blocks and bytes start from 0h.

5.6.2 Register values

ED_CONFIG(_REG) = 0110b

5.6.3 Results

NTAG 5 - Use of PWM, GPIO and event detection

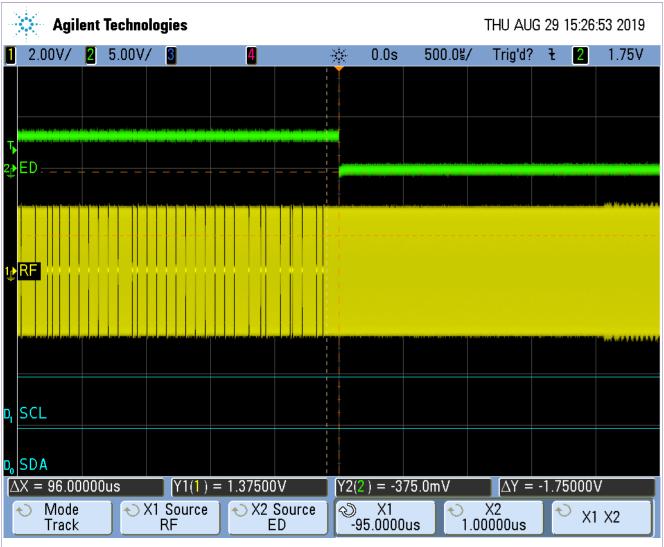
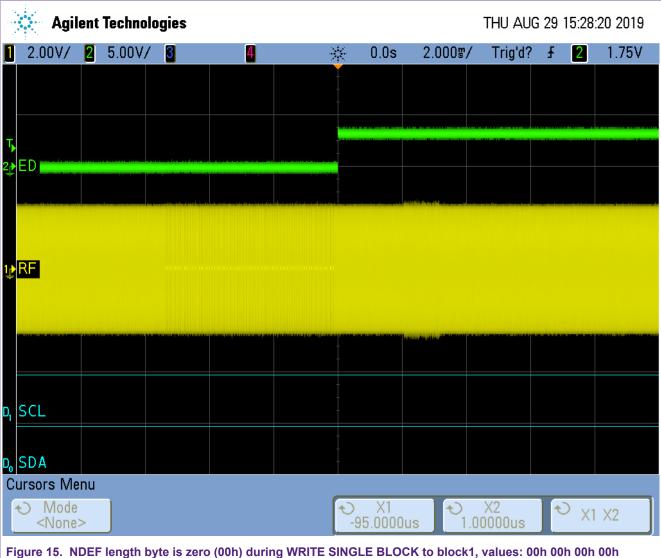



Figure 14. NDEF length byte written (value 02h) - After request's EOF, ED on

ED pin is triggered (pulled LOW) ~90 μs after VCD's WRITE command's EOF, addressing byte 1 in block 1.

NTAG 5 - Use of PWM, GPIO and event detection

command, ED off

ED pin is released (transition to HIGH) when value 00h is written to byte 1 in block 1.

5.7 Example 10 - Stand-by mode

5.7.1 Description

ED pin can be used to determine to Host, if NTAG 5 is in standby mode upon V_{CC} bootup.

- ED=ON: when IC is not in standby mode
- ED=OFF when IC is in standby mode

5.7.2 Register values

ED_CONFIG(_REG) = 0111b

5.7.3 Results

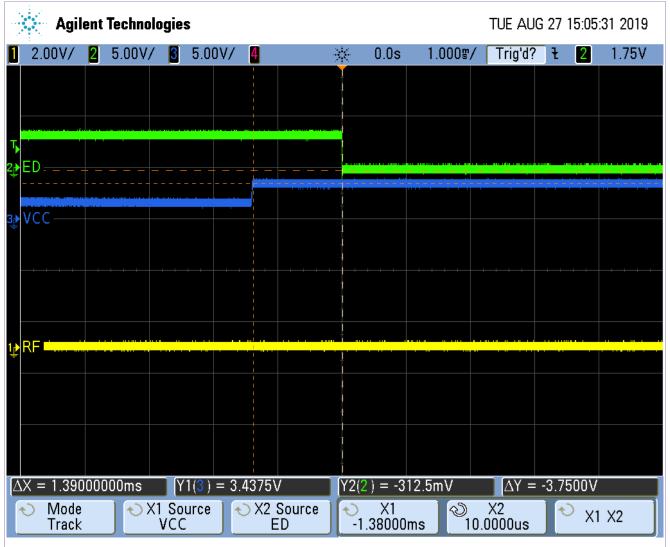


Figure 16. Indication to host that NTAG 5 is in automatic standby mode upon Vcc boot-up

NTAG 5 - Use of PWM, GPIO and event detection

ED pin is triggered (pulled LOW) ~1.39 ms after V_{CC} presence, to notify the I²C host that NTAG entered standby mode.

5.8 Example 11 - WRITE command indication

5.8.1 Description

ED pin can be used as indication to host if there is any WRITE command ongoing to user memory, configuration bytes or SRAM.

- ED=ON: start of write command
- ED=OFF:
 - end of write command response
 - NFC Field is OFF.

5.8.2 Register values

ED_CONFIG(_REG) = 1000b

5.8.3 Results

NTAG 5 - Use of PWM, GPIO and event detection

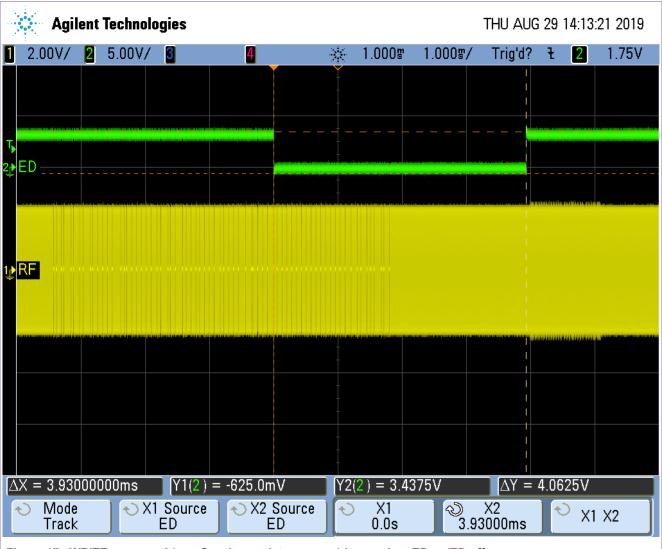


Figure 17. WRITE command (non Session register access) is ongoing, ED on/ED off

ED pin is triggered (pulled LOW) ~3.5 ms after VCD's WRITE command's SOF. ED pin is released (transition to HIGH) after ~3.93 ms after.

5.9 Example 12 - READ command indication

5.9.1 Description

ED pin can be used as indication to host if there is any READ command ongoing to user memory, configuration bytes or SRAM.

- ED=ON: start of READ command
- ED=OFF:
 - end of READ command response
 - NFC Field is OFF.

5.9.2 Register values

ED_CONFIG(_REG) = 1001b

5.9.3 Results

NTAG 5 - Use of PWM, GPIO and event detection

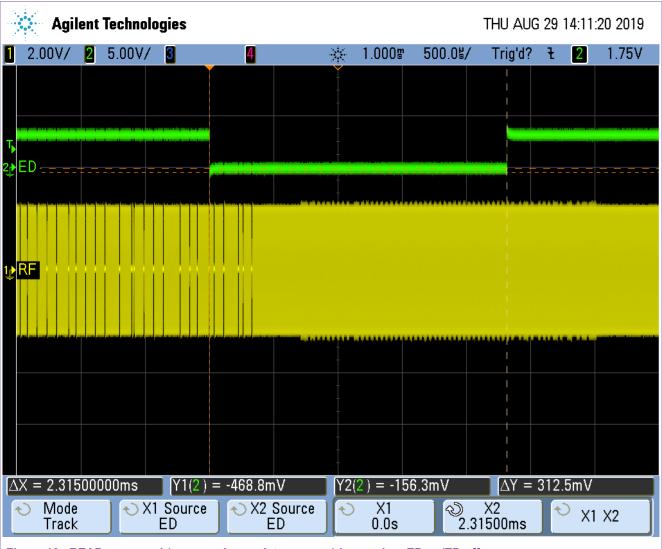


Figure 18. READ command (non-session register access) is ongoing, ED on/ED off

ED pin is triggered (pulled LOW) \sim 3.5 ms after VCD's READ command's SOF. ED pin is released (transition to HIGH) after \sim 2.32 ms after.

5.10 Example 13 - Start of command indication

5.10.1 Description

ED pin can be used as indication to host if there is any command ongoing.

- ED=ON: start (Start Of Frame) of any command
- ED=OFF:
 - end of any command response
 - NFC field is OFF.

5.10.2 Register values

ED_CONFIG(_REG) = 1010b

5.10.3 Results

AN11203 Application note COMPANY PUBLIC © NXP B.V. 2020. All rights reserved.

ED pin is triggered (pulled LOW) ~10 µs after VCD's any command's SOF. Note: X1 and X2 mark SOF coding.

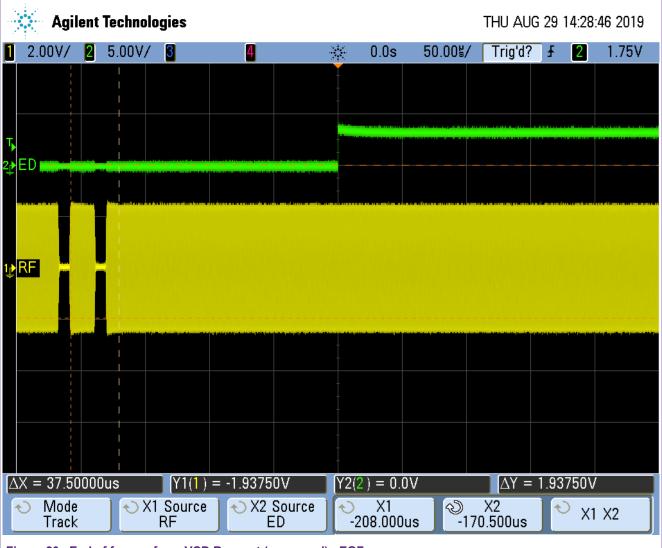


Figure 20. End of frame of any VCD Request (command) - EOF

ED pin is released (transition to HIGH) ~160 μs after VCD's any command's EOF.

Note: X1 and X2 mark EOF coding.

5.11 Example 14 - READ from SYNCH_DATA_BLOCK

5.11.1 Description

ED pin can be used as indication to host if data is READ from SYNCH_DATA_BLOCK.

- ED=ON if data is read from SYNCH_DATA_BLOCK
- ED=OFF:
 - Event needs to be cleared by setting b0 of ED_RESET_REG to 1b
 - NFC Field is OFF.

5.11.2 Register values

ED_CONFIG(_REG) = 1011b

5.11.3 Results

NTAG 5 - Use of PWM, GPIO and event detection

ED pin is triggered (pulled LOW) when VICC returns last byte of SYNCH_DATA_BLOCK, before CRC.

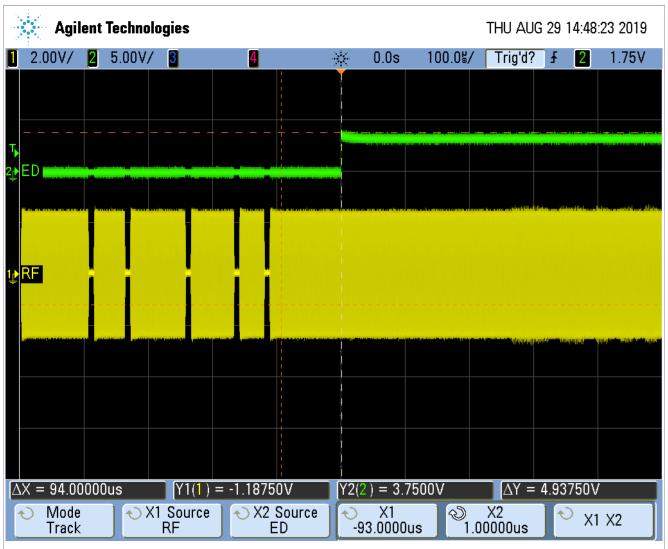


Figure 22. ED cleared by setting b0 of ED_RESET_REG to 1b

ED pin is released (transition to HIGH) when ED_RESET_REG is set to 1b with WRITE_CONFIG command, ~94 μs after it is EOF.

5.12 Example 15 - WRITE to SYNCH_DATA_BLOCK

5.12.1 Description

ED pin can be used as indication to host if data is written to SYNCH_DATA_BLOCK.

- ED=ON if data is written to SYNCH_DATA_BLOCK
- ED=OFF:
 - Event needs to be cleared by setting b0 of ED_RESET_REG to 1b
 - NFC Field is OFF.

5.12.2 Register values

ED_CONFIG(_REG) = 1100b

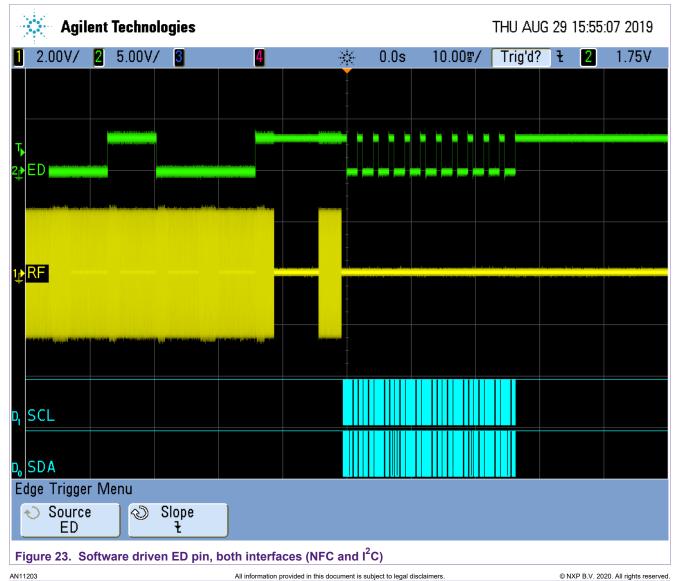
5.12.3 Results

Results look the same as in [Figure 21] and [Figure 22].

5.13 Example 16 - Software driven Interrupt

5.13.1 Description

ED pin can be triggered by:


- ED=ON when writing 1101b to ED_CONFIG_REG
- ED=OFF:
 - Event needs to be cleared by setting b0 of ED_RESET_REG to 1b

Remark: NFC Field is OFF does not toggle ED pin.

5.13.2 Register values

ED_CONFIG_REG = 1101b

5.13.3 Results

43 / 49

NTAG 5 - Use of PWM, GPIO and event detection

ED pin is released (transition to HIGH) by writing 1101b to ED_CONFIG_REG from both NFC and I^2C interface.

6 References

- [1] NTP5210 NTAG 5 switch, NFC Forum-compliant PWM and GPIO bridge, doc.no. 5477xx https://www.nxp.com/docs/en/data-sheet/NTP5210.pdf
- [2] NTP53x2 NTAG 5 link, NFC Forum-compliant I²C bridge, doc.no. 5476xx https://www.nxp.com/docs/en/data-sheet/NTP53x2.pdf
- [3] NTA5332 NTAG 5 boost, NFC Forum-compliant I²C bridge for tiny devices, doc.no. 5475xx https://www.nxp.com/docs/en/data-sheet/NTA5332.pdf
- [4] NFC Forum specification, Type 5 Tag Technical Specification Version 1.0 2018-04-27 [T5T] NFC ForumTM <u>https://nfc-forum.org/product-category/specification/</u>
- [5] NFC Forum specification, Tag NDEF Exchange Protocol Technical Specification Version 1.0 2019-04-24 [TNEP] NFC ForumTM <u>https://nfc-forum.org/our-work/specifications-and-application-documents/</u> <u>specifications/nfc-forum-candidate-technical-specifications/</u>
- [6] AN11201 NTAG 5 How to use energy harvesting, doc.no. 5304xx https://www.nxp.com/docs/en/application-note/AN11201.pdf

NTAG 5 - Use of PWM, GPIO and event detection

7 Legal information

7.1 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

7.2 Disclaimers

Limited warranty and liability - Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors. In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory. Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of NXP Semiconductors

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification. Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with

their applications and products. NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's hird party customer's third party customer's third party customer's third party customer's the application or use by customer's third party customer's liability in this respect.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Evaluation products — This product is provided on an "as is" and "with all faults" basis for evaluation purposes only. NXP Semiconductors, its affiliates and their suppliers expressly disclaim all warranties, whether express, implied or statutory, including but not limited to the implied warranties of non-infringement, merchantability and fitness for a particular purpose. The entire risk as to the quality, or arising out of the use or performance, of this product remains with customer. In no event shall NXP Semiconductors, its affiliates or their suppliers be liable to customer for any special, indirect, consequential, punitive or incidental damages (including without limitation damages for loss of business, business interruption, loss of use, loss of data or information, and the like) arising out the use of or inability to use the product, whether or not based on tort (including negligence), strict liability, breach of contract, breach of warranty or any other theory, even if advised of the possibility of such damages. Notwithstanding any damages that customer might incur for any reason whatsoever (including without limitation, all damages referenced above and all direct or general damages), the entire liability of NXP Semiconductors, its affiliates and their suppliers and customer's exclusive remedy for all of the foregoing shall be limited to actual damages incurred by customer based on reasonable reliance up to the greater of the amount actually paid by customer for the product or five dollars (US\$5.00). The foregoing limitations, exclusions and disclaimers shall apply to the maximum extent permitted by applicable law, even if any remedy fails of its essential purpose.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

Security — While NXP Semiconductors has implemented advanced security features, all products may be subject to unidentified vulnerabilities. Customers are responsible for the design and operation of their applications and products to reduce the effect of these vulnerabilities on customer's applications and products, and NXP Semiconductors accepts no liability for any vulnerability that is discovered. Customers should implement appropriate design and operating safeguards to minimize the risks associated with their applications and products.

7.3 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

I²C-bus — logo is a trademark of NXP B.V. **NTAG** — is a trademark of NXP B.V.

NTAG 5 - Use of PWM, GPIO and event detection

Tables

Abbreviations	3
PWM and GPIO Configuration Location	
(PWM_GPIO_CONFIG)	5
PWM and GPIO Configuration Definition	
(PWM_GPIO_CONFIG_0)	5
PWM and GPIO Configuration Definition	
(PWM_GPIO_CONFIG_1 and PWM_	
GPIO_CONFIG_1_REG)	6
PWM and GPIO Configuration bytes	
Location (PWM_GPIO_CONFIG_REG)	7
RF Command: VCD to VICC	8
RF Response: VICC to VCD - ACK	8
Configuration Bytes Location (CONFIG)	9
•	
	PWM and GPIO Configuration Location (PWM_GPIO_CONFIG) PWM and GPIO Configuration Definition (PWM_GPIO_CONFIG_0) PWM and GPIO Configuration Definition (PWM_GPIO_CONFIG_1 and PWM_ GPIO_CONFIG_1_REG) PWM and GPIO Configuration bytes Location (PWM_GPIO_CONFIG_REG) RF Command: VCD to VICC RF Response: VICC to VCD - ACK

Tab. 9.	PWM and GPIO Configuration Bytes
	Location (PWM_GPIO_CONFIG)10
Tab. 10.	RF Command: VCD to VICC
Tab. 11.	RF Command: VCD to VICC 10
Tab. 12.	RF Response: VICC to VCD10
Tab. 13.	RF Response: VICC to VCD10
Tab. 14.	Examples of few Resolution vs. Start Time
	percentage values - PWMx_ON calculation 12
Tab. 15.	PWM and GPIO Configuration Bytes
	Location (PWM_GPIO_CONFIG)12
Tab. 16.	(PWM0_ON, PWM0_OFF, PWM1_ON,
	PWM1_OFF) 13
Tab. 17.	RF Command: VCD to VICC 13
Tab. 18.	ED_CONFIG_REG19

NTAG 5 - Use of PWM, GPIO and event detection

Figures

Fig. 1.	Example 1: GPIO0 as output, GPIO1 as
	output
Fig. 2.	GPIOs set8
Fig. 3.	Example 1: GPIO0 as output, GPIO1 as
	output
Fig. 4.	PWM Example 3: 6-bit resolution, PWM0
	and PWM1 enabled as PWM Output14
Fig. 5.	ED pin used for NFC field ON/OFF detection16
Fig. 6.	ED pin used for NFC field ON detection17
Fig. 7.	ED pin used for NFC field OFF detection 18
Fig. 8.	Example 5 - ED = ON during the off period
	of PWM0 signal20
Fig. 9.	I2C -> NFC in Pass-though mode, ED on 22
Fig. 10.	I2C -> NFC in Pass-though mode, ED off 23
Fig. 11.	NFC \rightarrow I2C in Pass-though mode - Last byte
•	written by NFC, host can read data from
	SRAM
Fig. 12.	NFC \rightarrow I2C in Pass-though mode - Last byte
0	has been read from host (I2C), or NFC off
	or Vcc off
Fig. 13.	Arbiter locked access to NFC interface, ED
0.00	on

Fig. 14.	NDEF length byte written (value 02h) - After request's EOF, ED on
Fig. 15.	NDEF length byte is zero (00h) during
	WRITE SINGLE BLOCK to block1, values:
	00h 00h 00h 00h command, ED off 31
Fig. 16.	Indication to host that NTAG 5 is in
	automatic standby mode upon Vcc boot-up 32
Fig. 17.	WRITE command (non Session register
•	access) is ongoing, ED on/ED off
Fig. 18.	READ command (non-session register
C C	access) is ongoing, ED on/ED off
Fig. 19.	Start of any VCD Request (command) - SOF38
Fig. 20.	End of frame of any VCD Request
	(command) - EOF
Fig. 21.	Data READ from SYNCH_DATA_BLOCK,
	ED on
Fig. 22.	ED cleared by setting b0 of ED RESET
C C	REG to 1b
Fig. 23.	Software driven ED pin, both interfaces
0	(NFC and I2C)43

NTAG 5 - Use of PWM, GPIO and event detection

Contents

1	Abbreviations
2	Introduction
2.1	Potential applications4
2.2	Configuration registers4
2.3	Session registers
2.3	Weak pull-up/pull-down
3	GPIO functionality
3.1	GPIO Registers location5
3.2	GPIO as Output
3.2.1	Example 1: GPIO0 as output, GPIO1 as output
3.2.1.1	Description7
3.2.1.2	Schematics7
3.2.1.3	Configuration bytes7
3.2.1.4	RF command set7
3.2.1.5	Result
3.3	GPIO as Input
3.3.1	Example 2: GPIO0 as INPUT9
3.3.1.1	Description
3.3.1.1	•
	Schematics
3.3.1.3	Configuration bytes9
3.3.1.4	RF command set10
4	PWM functionality11
4.1	PWM Registers location11
4.2	PWM values calculation11
4.3	Example 3: PWM0 and PWM1 as PWM Output
4.3.1	Description
4.3.2	Registers values
4.3.3	RF command set
4.3.4	Result
	Event detection functionality
5 5.1	Event detection functionality
-	Example 4 - NFC Field Detect
5.1.1	Description
5.1.2	Register values15
5.1.3	Results15
5.2	Example 5 - PWM0 signal reflection on ED pin (PWM)19
5.2.1	Description
5.2.2	Registers values
5.2.3	Result
	Example 6 - I2C \rightarrow NFC Pass-through mode21
5.3	
5.3.1	Description
5.3.2	Register values
5.3.3	Results
5.4	Example 7 - NFC \rightarrow I2C Pass-through mode24
5.4.1	Description24
5.4.2	Register values24
5.4.3	Results24
5.5	Example 8 - Arbiter lock27
5.5.1	Description27
5.5.2	Register values27
5.5.3	Results27

5.6	Example 9 - NDEF Message TLV length	
5.6.1	Description	
5.6.2	Register values	29
5.6.3	Results	
5.7	Example 10 - Stand-by mode	32
5.7.1	Description	32
5.7.2	Register values	32
5.7.3	Results	
5.8	Example 11 - WRITE command indication	34
5.8.1	Description	34
5.8.2	Register values	34
5.8.3	Results	34
5.9	Example 12 - READ command indication	36
5.9.1	Description	
5.9.2	Register values	36
5.9.3	Results	36
5.10	Example 13 - Start of command indication	
5.10.1	Description	
5.10.2	Register values	38
5.10.3	Results	38
5.11	Example 14 - READ from SYNCH_DATA_	
	BLOCK	40
5.11.1	Description	40
5.11.2	Register values	40
5.11.3	Results	40
5.12	Example 15 - WRITE to SYNCH_DATA_	
	BLOCK	42
5.12.1	Description	42
5.12.2	Register values	42
5.12.3	Results	42
5.13	Example 16 - Software driven Interrupt	43
5.13.1	Description	
5.13.2	Register values	
5.13.3	Results	43
6	References	
7	Legal information	46

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© NXP B.V. 2020.

All rights reserved.

For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 9 January 2020 Document identifier: AN11203 Document number: 530212