
Freescale Semiconductor
Application Note

© Freescale Semiconductor, Inc., 2007. All rights reserved.

To help expedite Power Architecture™ board bringup, this
application note describes how to port the CodeWarrior™
target initialization file from the Freescale MPC8555CDS
development system to a custom development system. The
target initialization file offers many benefits, such as the
ability to debug a system before there is working code and a
working system.

The CodeWarrior integrated development environment
(IDE) can manually read/write the processor’s internal
registers or it can automatically initialize Power Architecture
processors through the target initialization file. The target
initialization file is a command file with contents that can be
similar to boot code because it can contain the configuration
of the Power Architecture interfaces and registers as well as
code to set up interrupt service routines in the double data
rate (DDR) memory controller. The target initialization file
is included in the Freescale board support package (BSP) for
each Power Architecture development system. Also, the
target initialization files for most Freescale development
systems are included in the following Freescale CodeWarrior
IDE installation directories:

• CWInstall\Power

Architecture_EABI_Support\Initialization_Files

\BDM\

• CWInstall\Power

Architecture_EABI_Support\Initialization_Files

\JTAG\

Contents
1 Initialization File Use Cases .2
2 Enable the Target Initialization File 3

2.1 CodeWarrior EPPC Target Settings Panel 3
2.2 CodeWarrior Flash Programmer Settings Panel . . .5

3 Syntax and Command Set .5
4 Flow of Target Initialization File 7
5 8555CDS_init_linux.cfg Target Initialization File8

5.1 Header .9
5.2 Delay Loop .9
5.3 Invalidate BR0 .10
5.4 Disable L2 ECC .10
5.5 Configure Internal SRAM for the Default 10
5.6 Activate Debug Interrupt and Enable SPU11
5.7 Invalidate and Disable L1 Instruction and
 Data Cache .12
5.8 Set Up Memory Map (MMU TLBs)13
5.9 Move CCSRBAR .18
5.10 Configure the Boot Page Translation Register . 18
5.11 Workaround for DLL Stabilization19
5.12 Workaround for Local Bus DLL 19
5.13 Disable Internal SRAM 20
5.14 Local Access Window Configuration 20
5.15 DDR Initialization .24
5.16 Local Bus Memory Controller Configuration . .25
5.17 Set up Interrupt Handlers in DDR 33
5.18 Activate Debug Interrupt and Enable SPU35
5.19 Set Up L1 Cache . 35
5.20 Time Base Enable .36
5.21 UART Configuration .36
5.22 CodeWarrior Debugger Configuration36

6 Conclusion .37
7 Revision History .37

Simplifying Board Bringup
Porting a CodeWarrior™ Initialization File to Your System

by Karl Gundal
Field Application Engineer
Freescale Semiconductor, Inc.
Austin, TX

Document Number: AN3366
Rev.1, 05/2007

Simplifying Board Bringup, Rev.1

2 Freescale Semiconductor

Initialization File Use Cases

This application note provides the following information:

• How to enable the CodeWarrior target initialization file.

• Syntax and command sets and overall flow of the target initialization file.

• How to analyze each section of the target initialization file and identify the sections to port.

Most information in this application note can be used across all Power Architecture products, but there
may be small differences due to product implementations. For example, the PowerQUICC™ II Pro
memory management unit (MMU) differs from the PowerQUICC III MMU.

After reading this application note, you should be able to modify the CodeWarrior target initialization file
to configure the following modules:

• L1 Instruction and Data cache

• L2 cache/SRAM

• Memory map through local access windows (LAWs)

• Memory management unit (MMU: TLBs)

• Flash memory devices connected to the local bus

• DDR memory controller

• Exception handlers in DDR

1 Initialization File Use Cases
Whether you need to use a target initialization file depends on your purpose. Use the file during board
bringup to configure the Power Architecture processor (in this case, the MPC8555). Before you can test
or debug basic functionality or program flash memory, you may need to initialize the local bus,
SDRAM/DDR, L1/L2 cache, memory map (local access windows and ATMUs), memory management
(MMU through TLBs), interrupts, or other functionality. Following are four cases in which use of a target
initialization file accelerates the board bringup process:

• From the target initialization file, use register settings and code that pertain to your design rather
than start from scratch. Start by comparing the block diagrams of your design to that of the
Freescale development system to determine what is similar. Then focus on those sections. After
verifying that sections of the target initialization file can work in your design, copy the register
settings and code into your boot code.

• You need to use the CodeWarrior debugger to program flash memory for a new prototype. In this
case, the CodeWarrior debugger needs to download its flash algorithm to temporary memory on
the target system. Usually, external DDR memory is the choice, although other memory can be
used instead, such as MPC8555 internal L2/SRAM. You must ensure that the Power Architecture
processor is properly programmed so the selected memory space can be used. If the processor has
available internal RAM, it may be preferable to use this RAM for flashing because the DDR
memory may not yet be verified to work.

• For a new prototype in which flash memory is not working, use the target initialization file to
configure external/internal memory, download your code to memory, and run the code from there.

• In some Power Architecture devices, if the power-on reset (POR) configuration options are
incorrect, you can use the target initialization file to reconfigure these settings automatically.

Simplifying Board Bringup, Rev.1

Freescale Semiconductor 3

 Enable the Target Initialization File

The following cases do not require use of a target initialization file:

• Board bringup is complete and boot code is successfully running on the development system.

• Boot code is up and running and registers can be modified in the boot code or through the boot
loader. However, it may be easier to make temporary changes through the target initialization file.

2 Enable the Target Initialization File
Two CodeWarrior settings panels control target initialization files:

• EPPC target settings panel. The setting takes effect only when you connect through one of the
following CodeWarrior menu options:

— Project → RUN

— Project → RESTART

— Debug → CONNECT

— Debug → RESTART

— Project → DEBUG

• CodeWarrior flash programmer settings panel. The setting takes effect only when you program
flash memory.

2.1 CodeWarrior EPPC Target Settings Panel
Figure 1 shows the options available through the target settings panel. From the CodeWarrior debugger
tool, select DEBUG VERSION SETTINGS from the Edit menu and then scroll down on the left side of the
Debug Version Settings panel and expand DEBUGGER. Then select the EPPC debugger settings

Figure 1. CodeWarrior EPPC Target Settings Panel

Simplifying Board Bringup, Rev.1

4 Freescale Semiconductor

 Enable the Target Initialization File

Checking the USE TARGET INITILIZATION FILE checkbox activates the next line, where you can enter the
name of a target initialization file. Optionally, you can click the BROWSE button to select a target
initialization file from a dialog box. In either case, the contents of the specified file are processed and sent
to the target development system.

If you use the ATTACH function, the CodeWarrior debugger assumes that code is already running on the
board and that the Power Architecture processor is already configured. Therefore the CodeWarrior
debugger does not run the target initialization file even if it is enabled.

If you enable the CodeWarrior debugger to use the target initialization file, you must enable the RESET
TARGET ON LAUNCH setting in the USB TAP Settings panel, as shown in Figure 2. This sends a hard reset
to the processor to prepare it to receive the commands. Note that HRESET is not asserted for Debug →
ATTACH TO PROCESS, regardless of this setting.

Figure 2. CodeWarrior USB TAP Settings Panel

Simplifying Board Bringup, Rev.1

Freescale Semiconductor 5

Syntax and Command Set

2.2 CodeWarrior Flash Programmer Settings Panel
To access the flash programmer settings panel, shown in Figure 3, select FLASH PROGRAMMER from the
Tools menu. This panel is used only to program flash memory, so the USE TARGET INITIALIZATION option
in this panel takes effect only when you program flash memory.

Figure 3. CodeWarrior Flash Programmer Settings Panel

3 Syntax and Command Set
The target initialization file is a command file that contains proprietary information used to program the
Power Architecture registers. The command syntax follows these rules:

• White spaces and tabs are ignored.

• Character case is ignored.

• Unless otherwise noted, values can be specified in hexadecimal, octal, or decimal:

— Hexadecimal values are preceded by 0x (for example, 0xDEADBEEF).

— Octal values are preceded by 0 (for example, 01234567).

— Decimal values start with a non-zero numeric character (for example, 1234).

• Comments start with a semicolon (;) or pound sign (#) and continue to the end of the line.

Simplifying Board Bringup, Rev.1

6 Freescale Semiconductor

Syntax and Command Set

The commands listed in Table 1 are used in the example target initialization file discussed in this
application note. This is not an exhaustive list. Other commands can be used in other initializations files.
For a complete list of commands, see Appendix A of the CodeWarrior reference file “Targeting Embedded
Power Architecture” in the {CodeWarrior}\Help\PDF folder.

Table 1. Initialization File Commands Used in Our Example

Command Description Syntax Argument/Parameters Example

Reset Resets the target processor and
either run/stop debugger.

Reset code Code:
0: Reset the processor then

debugger runs
1: Reset the processor then

debugger stops

N/A

Run Starts program execution at the
current program counter (PC)
address.

Run N/A N/A

Sleep Causes the debugger to wait the
specified number of milliseconds
before continuing to the next
command.

sleep milliseconds Milliseconds: The number of
milliseconds (in decimal) to
pause the processor

To pause execution
for 10 milliseconds:

sleep 10

Stop Stops program execution and halts
the target processor.

Stop N/A N/A

Writereg Writes the specified data to a
register.

writereg regName
value

 • regName: the name of the
register

 • value: the value (in
hexadecimal, octal, or
decimal) to write to the
register

To write the value
0x00001002 to the
MSR register:
writereg MSR
0x00001002

Writespr Writes the specified value to the
specified SPR register.

writespr regNumber
value

 • regNumber: the SPR register
number (in hexadecimal,
octal, or decimal)

 • value: the value (in
hexadecimal, octal, or
decimal) to write to the
register

To write the value
0x0220000 to SPR
register 638:
writespr 638
0x02200000

Writemem.l Writes a long integer (32 bytes) of
data to the specified memory
location.

writemem.l address
value

 • Address: the memory
address to modify (in
hexadecimal, octal, or
decimal)

 • value: the 32-bit value (in
hexadecimal, octal, or
decimal) to write to the
memory address

To write the long
integer value
0x12345678 to
memory location
0x0001FF00:

writemem.w
0x0001FF00
0x12345678

Simplifying Board Bringup, Rev.1

Freescale Semiconductor 7

Flow of Target Initialization File

4 Flow of Target Initialization File
The flow of the initialization file for our MPC8555 CDS example is as follows (sections in Bold indicate
sections of code that may need to be ported or changed):

• Invalidate BR0.

• Disable L2 ECC.

• Configure L2/internal SRAM as internal SRAM and cover the default 4 Kbyte MMU page:
0xFFFFF000–0xFFFFFFFF. Now we can write code to internal SRAM and then execute the code.

— Disable L2/internal SRAM.

— Set L2 Block 0 Base to 0xFFFE0000 for 128 Kbyte. The internal SRAM range is
0xFFFE0000–0xFFFFFFFF.

— Enable internal SRAM.

• Activate debug interrupt and enable the spurious vector register (SPU).

• Work around PQ3.

— Set interrupt vectors.

— At the reset address, write a branch to 0xFFFFF000.

• Invalidate and disable the L1 instruction and data cache.

• Set up the memory management unit (MMU) for the memory map.
— Define the memory map and attributes and then program the TLBs though the MAS

registers.
— Comment out all other TLB configurations.

• Set CCSRBAR to the base you need.
— CCSRBAR is the base to MPC8555 internal registers. CCSRBAR is changed from the

default value of 0xFF700000 to 0xE0000000. You can change this to another value if
needed.

• Configure the boot page translation register (BPTR) and remove the 4 Kbyte boot page from the
0xFFFFF000 address.

— Again invalidate BR0 to prevent flash data damage.

— The boot sequencer re-enables CS0 access.

• Workaround for DLL stabilization (DDR DLL controller register)
— The MPC8555 DDR DLL mode is not supported, so this section is not needed and should

be commented out.
• Workaround for local bus DLL lock. This is needed only if the local bus DLL mode is used.
• Disable internal SRAM. At this point we do not need to use the internal SRAM to run code, so

L2/internal SRAM is disabled.

• Configure local access windows (LAWs):
— Define LAWs for all DDR, PCI1, PCI2, and local bus memory space. Reference the

memory map and program a unique LAWBARn and LAWARn for each memory range
(that is, flash memory and so on).

— Comment out all other LAWBARn and LAWARn configurations.

Simplifying Board Bringup, Rev.1

8 Freescale Semiconductor

8555CDS_init_linux.cfg Target Initialization File

• DDR Initilization. To ensure that the DDR registers are changed correctly, read the following
application notes:
— AN2583, Programming the PowerQUICC™ III/PowerQUICC II Pro DDR SDRAM

Controller.
— AN2582, Hardware and Layout Design Considerations for DDR Memory Interfaces.

• Configure the local bus memory controller:
— Ensure that flash memory is connected to chip select 0 (CS0) and program OR0 and BR0

to reflect the correct attributes: port size (8, 16, or 32 bits), base address, and so on.
— Comment out all other ORn and BRn configurations.

• Interrupt vector initialization:
— Interrupt handlers are put in upper DDR space 0x00000000. Change this value if DDR is

not in this memory space.
— In case of an exception during debug/board bring up, write 0x48000000 (an infinite loop

opcode) to all 18 interrupt handler locations.
• Activate debug interrupts and enable the spurious vector register (SPU).

• Time base enable.

• The serial configuration UART enable received data available interrupt.

• CodeWarrior debugger settings:

— Trap debug event enable.

— Set the PC at the reset address (for Debug → CONNECT).

— For debugging, start at program entry point when the stack is not initialized.

5 8555CDS_init_linux.cfg Target Initialization File
The target initialization file for a particular evaluation system is contained within the BSP and included in
the CodeWarrior installation. The example discussed here is based on the target initialization file and is
also included in the BSP for the MPC8555CDS development system. The complete BSP can be
downloaded from MPC8555 product page (under Software → BOARD SUPPORT PACKAGES) at the
Freescale web site listed on the back cover of this document. The BSP is embedded within an *.ISO file,
which is a CD image that must be written to a burnable CD. As of the date of this application note, the
latest *.ISO for the MPC8555CDS evaluation board is MPC8555CDS. _20060124.iso.

This file is over 350 Mbytes and may take a while to download. After it downloads, double click on the
file to open up your CD writer. After burning the CD, you can find the target initialization file
8555CDS_init_linux.cfg for this evaluation system in the help\CW_debug directory.

The 8555CDS_init_linux.cfg file listed in this section is the complete CodeWarrior target initialization file
to configure the MPC8555 in the MPC8555 CDS development system. To help explain this file/code,
additional comments/paragraphs have been added in this application note. However, the code has not been
changed. To simplify the discussion, the file is split into sections. To port this file to a board, you may need
to change the code highlighted in Bold. Take time to understand all comments in the code.

Simplifying Board Bringup, Rev.1

Freescale Semiconductor 9

8555CDS_init_linux.cfg Target Initialization File

NOTE

Most configuration settings in the target initialization file are for a board
bringup environment. Therefore, we recommend that settings such as
address translation, caching, and so on be disabled.

Much of the code accesses the MPC8555 internal registers. All internal memory-mapped configuration,
control, and status registers in the MPC8555E are contained within a 1-Mbyte address region (window).
CCSRBAR points to the base of this 1-Mbyte window. There is no address translation for CCSRBAR so
there are no associated translation address registers. The window is always enabled with a fixed size of 1
Mbyte; no other attributes are attached, so there is no associated size/attribute register. This window takes
precedence over all local access windows.

For flexibility, CCSRBAR is relocatable in the local address space. After power-on reset of the MPC8555,
the default value for CCSRBAR is 0xFF70_0000. To access a register, just add the register offset to the
address of CCSRBAR. For further information, consult the sections of the MPC8555 reference manual on
the “Configuration, Control, and Status Base Address Register (CCSRBAR) and “Configuration, Control,
and Status Register Map.”

5.1 Header
The header of the target initialization file is as follows.

###
#FILE
$RCSfile: 8555CDS_init_Linux.cfg,v $
$Date: 2006/01/20 10:20:00 $
$Modified: Haiying Wang
$Revision: 1.1 $
#DESCRIPTION
initialization file for 8555 CDS board to debug kernel
This initialization file is according to the u-boot file
This file can only be used by CW for Linux 2.6 or above

#COPYRIGHT

Copyright 2006 Freescale Semiconductor
All rights reserved.

###

5.2 Delay Loop
The following three lines of code are commented out because this target initialization file does not expect
the processor to be configured by code or the boot sequencer through the system board. Instead, this file
is used to configure the processor. If the three lines of code were uncommented, the processor would be
reset and the CodeWarrior debugger would be suspended for 100 ms, which would allow the processor to
run on the board for 100 ms and start booting (as long as code is programmed on the board). At the end of
the 100 ms, program execution would stop and the processor would halt. Then the board could configure
itself. The 100 ms is an estimate of how long it may take to configure the board, and this value may need
to be changed if you do not comment out these lines.

#reset 0 # reset & run
#sleep 0x100
#stop

Simplifying Board Bringup, Rev.1

10 Freescale Semiconductor

8555CDS_init_linux.cfg Target Initialization File

5.3 Invalidate BR0
The lines of code shown here write 0x00001000 to the BR0 register (0xFF705000) because BR0 is at offset
0x0_5000 from CCSRBAR. This write disables chip-select 0 (CS0). Typically, CS0 is connected to the
system flash memory. BR0 is the base register for CS0. 0x00001000 sets this port to a 16-bit interface
using the GPCM and also invalidates this port because at this point in time we do not want the processor
to boot from flash memory when it is reset. Later on in this file, BR0 is validated such that the processor
boots from flash memory when it is reset.

invalidate BR0
writemem.l 0xFF705000 0x00001000

5.4 Disable L2 ECC
0xFF720E44 points to the L2ERRDIS register. In this initialization file, the L2 cache is configured as
SRAM so the TLBs can be initialized by running a small piece of code written into L2 SRAM and
executed. Therefore, the error correcting code (ECC) needs to be disabled. After power-on reset, the
contents of the internal SRAM data and ECC arrays are random and should be initialized before they are
read. Also, if the processor or any other device that uses sub-cache-line transactions initializes the internal
SRAM, ECC error checking should be disabled during initialization to avoid false ECC errors generated
during the read-modify-write process used for sub-cache-line writes to the disable register
(L2ERRDIS[MBECCDIS, SBECCDIS]). Note that if a DMA controller using cache-line writes initializes
the array, ECC checking can remain enabled during the initialization process.

The following code disables the ECC.

Workaround for ABIST off
writemem.l0xFF720E44 0x0000000C# L2ERRDIS[MBECCDIS]=1 L2ERRDIR[SBECCDIS]=1

5.5 Configure Internal SRAM for the Default
Part of the target initialization file uses the MPC8555 internal SRAM to configure the MPC8555 by
copying code to the internal SRAM and then executing the code. The code in this section configures the
L2_Cache/internal SRAM as internal SRAM. After processor power-on reset (POR), only a default 4
Kbyte block of memory (0xFFFFF000–0xFFFFFFFF) is accessible until the MMU is set up with
additional TLBs to access the rest of the memory space. Later on in this target initialization file, the
additional TLBs are set up. However, at this point the internal SRAM is set up within this 4 Kbyte range
of 0xFFFE0000–FFFFFFFF. Before L2CTL and L2SRBAR0 are configured, the L2 SRAM must be
disabled. Then the properties are configured and finally the SRAM is enabled.

###
configure internal SRAM to cover the default 4KB MMU page: 0xFFFFF000-0xFFFFFFFF
###
#
L2CTL
bit 0 = 0 - L2E: L2 SRAM disabled
bit 4-5 = 01 - L2BLKSZ: = 128KB
bit 13-15 = 001 - L2SRAM: Block 0 = SRAM 0
writemem.l0xFF720000 0x64010000

Simplifying Board Bringup, Rev.1

Freescale Semiconductor 11

8555CDS_init_linux.cfg Target Initialization File

#The L2 cache/SRAM is disabled and invalidated. The size of internal L2_cache/SRAM equals 256
#Kbytes. The block size is set to 128 Kbytes and the L2_cache/SRAM is configured as two 128
#Kbyte blocks of SRAM. Block 0 is set to SRAM0 and Block1 is set to Unused.

L2SRBAR0
bit 0-17 = BASE addr: 4GB-128KB
writemem.l0xFF720100 0xFFFE0000
This sets the base address of the L2 Block0 (SRAM0) to 0xFFFE0000. So the memory range is
0xFFFE0000 – FFFFFFFF.
This equals = 1FFFF = 128 Kbytes and is appropriately aligned since the block size = 128
Kbytes.
L2CTL
bit 0 = 1 - L2E: L2 SRAM enable
bit 4-5 = 01 - L2BLKSZ: = 128 Kbyte
bit 13-15 = 001 - L2SRAM: Block 0 = SRAM 0
writemem.l0xFF720000 0xA4010000

#Now that the properties are configured, the L2 SRAM can be enabled. At this point the L2 SRAM
#covers the default 4 Kbyte MMU page: 0xFFFFF000-0xFFFFFFFF.

#
###

5.6 Activate Debug Interrupt and Enable SPU
PowerQUICC III products such as the MPC8555 processor require the following work around so that the
CodeWarrior debugger can obtain complete control of the processor. The code listed in this section
performs the following tasks:

1. Activate debug interrupt MSR[DE] and MSR[SPE_APU] signal processing engine for
floating-point operations.

2. IVPR (base addr) + IVOR15 (offset) is set to 0xFFFF_F000, which is in the 4 Kbyte memory
space.

After power up, PowerQUICC III processors have a default of 4 Kbyte of memory enabled
(0xFFFF_F000 to 0xFFFF_FFFF). Therefore, the debug interrupt vector should be in this range of
addresses.

3. A hardware breakpoint (debug event) is programmed at 0xFFFF_F000 (debug interrupt address)
into IAC1 and the memory is set up to enable this event. The processor is then reset to hit the
breakpoint. Then the debug event is disabled and IAC1 is cleared.

A debug event can be enabled to occur by programming a specific address into the instruction
address compare (IAC1) register and then enabling the event in the DBCR.

4. Set up the debug control register (DBCR) as follows:

— Bit[32] = 1 internal debug mode; (additionally MSR[DE] is configured for a a debug interrupt)

— Bit[39] = 1 TRAP

— Bit[40] = 1 IAC1 events can occur

###
activate debug interrupt and enable SPU
###
#writeregMSR 0x02000200
set interrupt vectors
writereg IVPR 0xFFFF0000 # IVPR (compatible to the Flash)

Simplifying Board Bringup, Rev.1

12 Freescale Semiconductor

8555CDS_init_linux.cfg Target Initialization File

writereg IVOR15 0x0000F000 # debug - (a valid instruction should exist to be fetched)
write at the reset address a branch to 0xFFFFF000
writemem.l 0xfffffffc 0x4BFFF004 # branch to 0xfffff000
writereg IAC1 0xFFFFF000
writereg DBCR0 0x41800000
writemem.l 0xFFFFF000 0x60000000 # nop (or any valid opcode)
run
sleep 0x10
stop
writereg DBCR0 0x41000000
writereg IAC1 0x00000000
end of the workaround
This is a workaround for PQ3#
###

5.7 Invalidate and Disable L1 Instruction and Data Cache
The internal SRAM is already configured, so now we can write code to internal SRAM and then execute
code, as follows:

1. Write code to internal SRAM. Note the last instruction in the code is an infinite loop command.

2. Set the program counter to the memory location of the first instruction of the code.

3. Use the CodeWarrior sequence of run, sleep 0x10, stop to accomplish the following:

a) Allow the MPC8555 processor to start program execution at the current program counter (PC)
address.

b) Cause the CodeWarrior debugger to wait 10 ms before continuing to the next command.

c) Stop program execution and halt the target processor.

This sequence allows the MPC8555 to run for 10 ms, which is enough time to run the code sequence in
internal SRAM. The last line in the code should be an infinite loop. Therefore, the MPC8555 should finish
executing the code and be running in an infinite loop by the time 10 ms passes. Then the CodeWarrior
debugger reaches the stop command and halts the processor.

The following code, which invalidates and disables the L1 instruction and data cache, is copied to internal
SRAM and then executed. In the first line, the opcode for mfspr r0,L1CSR0 is 0x7C12FAA6. A value of
0x7C12FAA6 is written to 0xFFFFF008 (which is part of the internal SRAM previously configured). The
subsequent lines also copy the opcodes into memory. The PC is then programmed to 0xFFFFF008. Finally,
the run, sleep, stop command allows the MPC8555 processor to run this code from internal memory.

###
Invalidate cache
###
writemem.l 0xFFFFF008 0x7C12FAA6 # mfspr r0,L1CSR0 /* invalidate d-cache */
writemem.l 0xFFFFF00C 0x60000002# ori r0,r0,0x0002
writemem.l 0xFFFFF010 0x7C0004AC # sync
writemem.l 0xFFFFF014 0x4C00012C # isync
writemem.l 0xFFFFF018 0x7C12FBA6 # mtspr L1CSR0,r0
writemem.l 0xFFFFF01C 0x4C00012C # isync
writemem.l 0xFFFFF020 0x7C12FAA6 # mfspr r0,L1CSR0 /* disable d-cache */
writemem.l 0xFFFFF024 0x3C20FFFF # lis rsp,-1
writemem.l 0xFFFFF028 0x6021FFFE # ori rsp,rsp,0xfffe
writemem.l 0xFFFFF02C 0x7C000838 # and r0,r0,rsp
writemem.l 0xFFFFF030 0x7C0004AC # sync

Simplifying Board Bringup, Rev.1

Freescale Semiconductor 13

8555CDS_init_linux.cfg Target Initialization File

writemem.l 0xFFFFF034 0x4C00012C # isync
writemem.l 0xFFFFF038 0x7C12FBA6 # mtspr L1CSR0,r0
writemem.l 0xFFFFF03C 0x4C00012C # isync
writemem.l 0xFFFFF040 0x7C13FAA6 # mfspr r0,L1CSR1 /* invalidate i-cache */
writemem.l 0xFFFFF044 0x60000002 # ori r0,r0,0x0002
writemem.l 0xFFFFF048 0x7C13FBA6 # mtspr L1CSR1,r0
writemem.l 0xFFFFF04C 0x4C00012C # isync
writemem.l 0xFFFFF050 0x7C13FAA6 # mfspr r0,L1CSR1 /* disable i-cache */
writemem.l 0xFFFFF054 0x3C20FFFF # lis rsp,-1
writemem.l 0xFFFFF058 0x6021FFFE # ori rsp,rsp,0xfffe
writemem.l 0xFFFFF05C 0x7C000838 # and r0,r0,rsp
writemem.l 0xFFFFF060 0x7C13FBA6 # mtspr L1CSR1,r0
writemem.l 0xFFFFF064 0x4C00012C # isync
writemem.l 0xFFFFF068 0x7C0004AC # sync
writemem.l 0xFFFFF06C 0x38800055 # li r4, 0x55 /*to confirm the running */
writemem.l 0xFFFFF070 0x48000000 # /* infinite loop */
writereg PC 0xfffff008
run
sleep 0x10
stop
##

5.8 Set Up Memory Map (MMU TLBs)
The MPC8555E has a flexible local memory map, which is the 32-bit address space visible to the processor
as it accesses memory and I/O space. All memory accessed by the MPC8555E DDR SDRAM and local
bus memory controllers exists in this memory map, as do all memory-mapped configuration, control, and
status registers.

The MPC8555 has two programmable TLBs for memory management. After power-on reset, the
MPC8555 provides only one default TLB entry to access boot code. This TLB entry allows accesses only
within the highest 4 Kbytes of memory (0xFFFFF000–0xFFFFFFFF). Therefore, to access the full 8
Mbytes of default boot space, the 1 Mbyte of CCSR space, as well as any other address additional TLB
entries, must be set up.

The MPC8555E on-chip memory array can be configured as a memory-mapped SRAM of 128 or 256
Kbytes. Configuration registers in the L2 cache controller set the base addresses and sizes for these
windows. When enabled, these windows supersede all other mappings of these addresses for processor and
global (snoopable) I/O transactions.

NOTE

SRAM windows must never overlap configuration space as defined by
CCSRBAR. SRAM windows can overlap local access windows, but this is
discouraged because processor and snoopable I/O transactions would map
to the SRAM while non-snooped I/O transactions would be mapped by the
local access windows. Only if all accesses to the SRAM address range are
snoopable can results be consistent if the SRAM window overlaps a local
access window. For information on configuring SRAM windows, see the
section of the MPC8555 reference manual entitled, “L2 Memory-Mapped
SRAM Base Address Registers 0–1 (L2SRBARn).”

Simplifying Board Bringup, Rev.1

14 Freescale Semiconductor

8555CDS_init_linux.cfg Target Initialization File

This section describes how to set up the MPC8555 memory management unit (MMU). You probably have
a completely different memory map. However, to make it easier to port, you should write this memory map
in the format shown in the first part of the code in this section. If any of these memory ranges are not used,
then comment out those sections.

The two TLBs used for memory management are as follows:

• TLB1. A 16-entry fully associative array for variable-sized pages. Each entry can be configured
from 4 Kbyte to 256 MByte.

• TLB0 . A 256-entry 2-way associative array with a fixed 4 Kbyte page.

In this example, we use 10 entries of TLB1 to define the memory map. To program the MMU (and
therefore TLB1), write the correct configuration data to the MAS[0–4] registers and then issue a tlbwe
command. The TLB Write Entry instruction (tlbwe) causes the information stored in certain locations of
MAS[0–3] to be written to the TLB specified in MAS0. For a complete description of the MAS[0–4]
registers, see the section on MMU assist registers in the MPC8555 reference manual. The MAS registers
are implemented as 64-bit GPRs, the upper 32 bits of which are used only with 64-bit load, store, and
merge instructions. The lower 32 bits need to be programmed. The remainder of this discussion pertains
to the lower 32 bits. Therefore, the first bit (counting from left to right) is referenced as bit 32 and the last
bit is referenced as bit 63.

For each unique memory range, the following must be changed:

• MAS0. To select a unique entry of the sixteen available entries, change the entry select number
(ESEL), bits 44–47.

• MAS1. Change the translation size (TSIZE), bits 52–55, to the size of the page you need. If you
need more than a 256 Mbyte page, concatenate several TLB entries.

• MAS2. Change the effective page number (EPN), bits 32–51, to the starting address of the page (or
base address) you need. In most cases, you only need to change one other bit (I, bit 60) which
determines if this is cacheable or cache inhibited space. It is good practice to set all memory space
to cache inhibited because it is easier to debug a board when caches are not used. You can re-enable
this space as needed.

• MAS3. In this example there is no address translation, so the real page number is the same as the
effective page number. Also, all permission bits are enabled because this configuration is mainly
for a board bringup and we are not concerned with user/supervisor space at this juncture. Change
the real page number (RPN), bits 32–51, 1 to the same value as the effective page number.

• MAS4. Does not need to be changed.

For all other memory ranges that are not used in your system, the sub-sections should be commented out.
In the code that follows, you may need to change the code highlighted in Bold to port this file to a board.

###
Memory Map - LAW(Local Access Window configuration)
###

0xe00000000xe3ffffff TLB1_1CCSR 1M 0xe0000000 - 0xe00fffff
PCI1 IO 16M 0xe2000000 - 0xe2ffffff

PCI2 IO 16M 0xe3000000 - 0xe3ffffff
0x000000000x0fffffff TLB1_3DDR 256M
0x100000000x1fffffff TLB1_4DDR 256M

Simplifying Board Bringup, Rev.1

Freescale Semiconductor 15

8555CDS_init_linux.cfg Target Initialization File

0xff0000000xffffffff TLB1_5FLASH 16M
0x800000000x8fffffff TLB1_6PCI1 256M
0x900000000x9fffffff TLB1_7PCI1 256M
0xf80000000xf80fffff TLB1_8NVRAM/CADMUS1M
0xf00000000xf3ffffff TLB1_9Local Bus SDRAM64M
0xa00000000xafffffff TLB1_10PCI2 256M
0xb00000000xbfffffff TLB1_11PCI2 256M

MMU initialization

#

MAS0: MMU read/write and replacement control
MAS1: descriptor context and configuration control
MAS2: EPN and page attributes
MAS3: RPN and access control
MAS4: Hardware replacement assist configuration

##
define 64MB TLB1 entry 1: 0xe0000000 - 0xe3FFFFFF
for:
CCSR 0xe0000000 - 0xe00fffff
PCI1 IO 0xe2000000 - 0xe2ffffff
PCI2 IO 0xe3000000 - 0xe3ffffff

Note that one TLB entry is used for CCSR and PCI1 and PCI2. This can be done since it is less
than 256 Mbyte total space #and their attributes are the same.

writespr 624 0x10010000# MAS0 #selects 1st entry of TLB1
writespr 625 0x80000800# MAS1 #validates tlb, sets to 64MByte size
writespr 626 0xe0000008# MAS2 #effective page number 0xe0000000,cache #inhibited
writespr 627 0xe000003f# MAS3 #real page number 0xe0000000,permission bits #(UX, SX, UW, SW,
UR, SR)all set.

writespr 628 0x00000000# MAS4

write tlb entry

As you can see again below, code is being written to L2SRAM and then executed as we discussed
previously.

writemem.l0xFFFFF0000x7C0007A4 # tlbwe
writemem.l0xFFFFF0040x4C00012C # isync
writemem.l0xFFFFF0080x7C0004AC # msync
writemem.l0xFFFFF00C0x38600055 # li r3, 0x55 to confirm the running
writemem.l0xFFFFF0100x48000000 # infinite loop
writereg PC 0xfffff000

run
sleep 0x10
stop

##

define 256MB TLB1 entry 3: 0x00000000 - 0x0FFFFFFF for DDR
writespr 624 0x10030000# MAS0 #selects 3rd entry of TLB1
writespr 625 0x80000900# MAS1 #validates tlb, sets to 256MByte size
writespr 626 0x00000000# MAS2 #effective page number 0x00000000, cacheable
writespr 627 0x0000003f# MAS3 #real page number 0x00000000,permission bits #(UX, SX, UW, SW,
UR, SR)all set.

#writespr628 0x00000000# MAS4

Simplifying Board Bringup, Rev.1

16 Freescale Semiconductor

8555CDS_init_linux.cfg Target Initialization File

write tlb entry

#since the previous TLB1 entry 1 array already wrote the code (tlbwe, isync, msync, #etc) to
internal SRAM then we do not have to re-write it again.

writereg PC 0xfffff000
run
sleep 0x10
stop

##

define 256MB TLB1 entry 4: 0x10000000 - 0x1FFFFFFF for DDR
writespr 624 0x10040000# MAS0 #selects 4th entry of TLB1
writespr 625 0x80000900# MAS1 #validates tlb, sets to 256MByte size
writespr 626 0x10000000# MAS2 #effective page number 0x10000000, cacheable
writespr 627 0x1000003f# MAS3 #real page number 0x00000000,permission bits #(UX, SX, UW, SW,
UR, SR)all set.

writespr 628 0x00000000# MAS4
write tlb entry
writereg PC 0xfffff000
run
sleep 0x10
stop

##

define 16MB TLB entry 5: 0xFF000000 - 0xFFFFFFFF
for FLASH bank #0 and bank #1
writespr 624 0x10050000# MAS0 #selects 5th entry of TLB1
writespr 625 0x80000700# MAS1 #validates tlb, sets to 16MByte size
writespr 626 0xFF000008# MAS2 #effective page number 0xFF000000, cache #inhibited
writespr 627 0xFF00003f# MAS3 #real page number 0xFF000000,permission bits #(UX, SX, UW, SW,
UR, SR)all set.

write tlb entry
writereg PC 0xfffff000
run
sleep 0x10
stop

###

define 256MB TLB1 entry 6: 0x80000000 - 0x8FFFFFFF for PCI1
writespr 624 0x10060000# MAS0 #selects 6th entry of TLB1
writespr 625 0x80000900# MAS1 #validates tlb, sets to 256MByte size
writespr 626 0x80000008# MAS2 #effective page number 0x80000000, cache #inhibited
writespr 627 0x8000003f# MAS3 #real page number 0x90000000,permission bits #(UX, SX, UW, SW,
UR, SR)all set.

write tlb entry
writereg PC 0xfffff000
run
sleep 0x10
stop

###

define 256MB TLB1 entry 7: 0x90000000 - 0x9FFFFFFF
for PCI1

Simplifying Board Bringup, Rev.1

Freescale Semiconductor 17

8555CDS_init_linux.cfg Target Initialization File

writespr 624 0x10070000# MAS0 #selects 7th entry of TLB1
writespr 625 0x80000900# MAS1 #validates tlb, sets to 256MByte size
writespr 626 0x90000000# MAS2 #effective page number 0x90000000, cacheable
writespr 627 0x9000003f# MAS3 #real page number 0x90000000,permission bits #(UX, SX, UW, SW,
UR, SR)all set.

write tlb entry
writereg PC 0xfffff000
run
sleep 0x10
stop

##

define 1M TLB1 entry 8: 0xf8000000 - 0xf80fffff for CADMUS

writespr 624 0x10080000# MAS0 #selects 8th entry of TLB1
writespr 625 0x80000500# MAS1 #validates tlb, sets to 1MByte size
writespr 626 0xf8000008# MAS2 #effective page number 0xF8000000, cache #inhibited
writespr 627 0xf800003f# MAS3 #real page number 0xF8000000,permission bits #(UX, SX, UW, SW,
UR, SR)all set.

write tlb entry
writereg PC 0xfffff000
run
sleep 0x10
stop

###

define 64MB TLB1 entry 9: 0xf0000000 - 0xf3ffffff for SDRAM

writespr 624 0x10090000# MAS0 #selects 9th entry of TLB1
writespr 625 0x80000800# MAS1 #validates tlb, sets to 64MByte size
writespr 626 0xf0000008# MAS2 #effective page number 0xF0000000, cache #inhibited
writespr 627 0xf000003f# MAS3 #real page number 0xF0000000,permission bits #(UX, SX, UW, SW,
UR, SR)all set.

write tlb entry
writereg PC 0xfffff000
run
sleep 0x10
stop

###

define 256MB TLB1 entry 10: 0xa0000000 - 0xaFFFFFFF for PCI1
writespr 624 0x100a0000# MAS0 #selects 10th entry of TLB1
writespr 625 0x80000900# MAS1 #validates tlb, sets to 246MByte size
writespr 626 0xa0000008# MAS2 #effective page number 0xA0000000, cache #inhibited
writespr 627 0xa000003f# MAS3 #real page number 0xA0000000,permission bits #(UX, SX, UW, SW,
UR, SR)all set.

write tlb entry
writereg PC 0xfffff000
run
sleep 0x10
stop

##

define 256MB TLB1 entry 11: 0xb0000000 - 0xbFFFFFFF for PCI1

Simplifying Board Bringup, Rev.1

18 Freescale Semiconductor

8555CDS_init_linux.cfg Target Initialization File

writespr 624 0x100b0000# MAS0 #selects 11th entry of TLB1
writespr 625 0x80000900# MAS1 #validates tlb, sets to 256MByte size
writespr 626 0xb0000000# MAS2 #effective page number 0xB0000000, cache #inhibited
writespr 627 0xb000003f# MAS3 #real page number 0xB0000000,permission bits #(UX, SX, UW, SW,
UR, SR)all set.

write tlb entry
writereg PC 0xfffff000
run
sleep 0x10

###

5.9 Move CCSRBAR
Now that the memory map is configured, we can move CCSRBAR. This example code moves it from
0xFF700000 to 0xE0000000. You may want to move CCSRBAR to another location. After CCSRBAR is
moved to 0xe0000000, the memory base for accesses to the internal registers is changed to the new base.
If you choose another value, be sure to change the hardcoded values in the rest of the code—for example,
the BPTR register is now accessed by address 0xe0000020 instead of 0xFF700020.

###
move CCSR at 0xe0000000

CCSRBAR (bit 12:23, BASE_ADDR)
writemem.l0xFF7000000x000e0000
debugger does not need anymore to be informed about the 8548 memory-mapped register base
CCSRBAR.
It will read CCSRBAR value through JTAG
#setMMRBaseAddr 0xe0000000
##

5.10 Configure the Boot Page Translation Register
In target initialization files for previous MPC83xx boards, the SRAM was not mapped within the default
4 Kbyte boot page and boot page translation was required to boot from internal SRAM. If the boot
sequencer was enabled, there was an issue that the CS0 may be re-enabled. Therefore, the second write in
this section is a workaround to disable CS0 again. However, this newer target initialization file maps the
internal SRAM within the default 4 Kbyte boot page, so boot page translation is not needed and the default
value of BPTR as 0x0000_0000 works fine. This section of code is not needed, so it is commented out.

##
config BPTR register (Boot Page Translation Register)
remove the 4k boot page from 0xFFFFF000 address
###
#writemem.l 0xe0000020 0x00000000
###
Invalidate again BR0 to prevent flash data damage in case
the boot sequencer re-enables CS0 access
#writemem.l 0xe0005000 0x00001000
###

Simplifying Board Bringup, Rev.1

Freescale Semiconductor 19

8555CDS_init_linux.cfg Target Initialization File

5.11 Workaround for DLL Stabilization
The MPC8555 DDR DLL mode is no longer supported, so this section of code should be commented out.

###
workaround for DLL stabilization (DDR DLL Controller Register)
###

writemem.l 0xFFFFF074 0x3FC0e00E # lis r30,0xfdfE
writemem.l 0xFFFFF078 0x3BDE0E10 # addi r30,r30,0x0E10
writemem.l 0xFFFFF07c 0x83FE0000 # lwz r31,0(r30)
writemem.l 0xFFFFF080 0x57FF063E # clrlwi r31,r31,24
writemem.l 0xFFFFF084 0x57FF801E # slwi r31,r31,16
writemem.l 0xFFFFF088 0x67FF8000 # oris r31,r31,0x8000
writemem.l 0xFFFFF08c 0x93FE0000 # stw r31,0(r30)
writemem.l 0xFFFFF090 0x48000000 # /* infinite loop */
writereg PC 0xfffff074

run
sleep 0x10
stop
#
###

5.12 Workaround for Local Bus DLL
The workaround for the local bus DLL (LBC11 errata) is needed only if you are using the local bus DLL.
If local bus DLL mode us not used, then comment this section out.

###

workaround for Local Bus DLL lock

###

writemem.l 0xFFFFF344 0x3CA00003 #lis r5,3
writemem.l 0xFFFFF348 0x60A50002 #ori r5,r5,0x0002 #LCRR, enable DLL
writemem.l 0xFFFFF34C 0x3C80e000 #lis r4,0xfdf0
writemem.l 0xFFFFF350 0x90A450D4 #stw r5,0x50d4(r4)
writemem.l 0xFFFFF354 0x3CA00000 #lis r5,0
writemem.l 0xFFFFF358 0x60A53000 #ori r5,r5,0x3000 #wait
writemem.l 0xFFFFF35C 0x7CA903A6 #mtctr r5
writemem.l 0xFFFFF360 0x42000000 #bdnz 0
#writemem.l 0xFFFFF364 0x3CA0fdfE #lis r5,0xfdfe #LBDLLCR
writemem.l 0xFFFFF364 0x3CA0e00E #lis r5,0xfdfe #LBDLLCR
writemem.l 0xFFFFF368 0x60A50E20 #ori r5,r5,0x0e20
writemem.l 0xFFFFF36C 0x80C50000 #lwz r6,0(r5)
writemem.l 0xFFFFF370 0x54C6043E #clrlwi r6,r6,16
writemem.l 0xFFFFF374 0x54C6801E #slwi r6,r6,16
writemem.l 0xFFFFF378 0x64C68000 #oris r6,r6,0x8000
writemem.l 0xFFFFF37C 0x90C50000 #stw r6,0(r5)
writemem.l 0xFFFFF380 0x48000000
writereg PC 0xfffff344
run
sleep 0x10
stop
#
###

Simplifying Board Bringup, Rev.1

20 Freescale Semiconductor

8555CDS_init_linux.cfg Target Initialization File

5.13 Disable Internal SRAM
We have finished using the L2cache/SRAM as internal SRAM, so we now disable the L2 SRAM, which
we previously configured from 0xFFFE0000–FFFFFFFF.

##
disable internal SRAM at 0xf8000000
###
L2CTL
bit 0 = 0 - L2E: L2 SRAM disabled
bit 4-5 = 01 - L2BLKSZ: = 512KB
bit 13-15 = 001 - L2SRAM: Block 0 = SRAM 0
writemem.l0xe00200000x00000000
#We are now done with using the L2cache as internal SRAM. So we now disable the L2 #SRAM.
L2SRBAR0
bit 0-17 = BASE addr: 0xf8000000

#writemem.l0xe00201000x0f800000
L2CTL
bit 0 = 1 - L2E: L2 SRAM enable
bit 4-5 = 01 - L2BLKSZ: = 512KB
bit 13-15 = 001 - L2SRAM: Block 0 = SRAM 0
#writemem.l0xe00200000x80010000

##

5.14 Local Access Window Configuration
The local memory map is defined by a set of eight local access windows (LAWs). All local memory
associated with the following interfaces must be mapped to a LAW:

• DDR SDRAM controller

• PCI controller

• Local bus

The LAWs associate a range of the local 32-bit address space to these interfaces so that the internal
interconnections of the MPC8555E can route a transaction from its source to the proper target. The size of
each window can be configured from 4 Kbytes to 2 Gbytes. No address translation is performed. The base
address defines the high-order address bits that give the location of the window in the local address space.
The window attributes enable the window, define its size, and specify the target interface.

Except for configuration space (mapped by CCSRBAR), on-chip SRAM regions (mapped by the
L2SRBAR registers), and default boot ROM, all addresses used by the system must be mapped by a LAW.
This requirement includes addresses that are mapped by inbound ATMU windows; target mappings of
inbound ATMU windows and local access windows must be consistent. It is not necessary to use a LAW
to specify the location of the boot ROM because it is in the default location at the highest 8 Mbytes of
memory (see the section of the MPC8555 reference manual entitled “Boot ROM Location”). Also, you do
not have to define a LAW to describe the range of memory used for memory-mapped registers because
this is a fixed 1 Mbyte space to which CCSRBAR points. For details, refer to the section on “Local
Memory Map Overview and Example” in the MPC8555 reference manual.

You must program the LAWs to match the DDR, PCI, and local bus memory map. Create a table similar
to the format in the top section of the code that immediately follows Table 3. For each unique memory
range (that is, flash memory and so on) for DDR, PCI, or the local bus, select one of the LAWs and program

Simplifying Board Bringup, Rev.1

Freescale Semiconductor 21

8555CDS_init_linux.cfg Target Initialization File

the correct configuration. You should comment our any section in the code that does not match your board.
For each window, program the base address in LAWBARn and then program the target interface, size, and
enable bit in LAWARn. The next subsections describe these registers.

5.14.1 Local Access Window n Base Address Registers (LAWBAR[0–7])
Figure 4 shows the bit fields of the LAWBARn registers.

5.14.2 Local Access Window n Attributes Registers
Figure 5 shows the bit fields of the LAWARn registers.

Offset 0xC08
0xC28

0xC48
0xC68
0xC88

0xCA8
0xCC8
0xCE8

Access: Read/Write

 0 11 12 31

R —
BASE_ADDR

W

Reset All zeros

Figure 4. Local Access Windown Address Registers (LAWBAR0-LAWBAR7)

Table 2. LAWBARn Bit Field Descriptions

Bits Name Description

0–11 — Reserved

12–31 BASE_ADDR Identifies the 20 most-significant address bits of the base of local access windown. The specified
base address should be aligned to the window size, as defined by LAWARn [SIZE].

Offset 0xC10

0xC30
0xC50
0xC70

0xC90
0xCB0
0xCD0

0xCF0

Access: Read/Write

 0 1 7 8 11 12 25 26 31

R
EN

—
TRGT_IF

—
SIZE

W

Reset All zeros

Figure 5. Local Access Windown Attributes Registers (LAWAR0-LAWAR7)

Simplifying Board Bringup, Rev.1

22 Freescale Semiconductor

8555CDS_init_linux.cfg Target Initialization File

Table 3 describes LAWARn bit settings.

###
Memory Windows
###

0x000000000x1ffffff LAW1 DDR
0x800000000x9ffffff LAW2 PCI1 MEM
0xa00000000xbffffff LAW3 PCI2 MEM
0xe20000000xe2fffff LAW4 PCI1 IO
0xe30000000xe3fffff LAW5 PCI2 IO
0xf00000000xfffffff LAW6 Local Bus

##

configure local access windows

window 1: DDR = F
window 2: PCI1 MEM = 0
window 3: PCI2 MEM = 1
window 4: PCI1 IO = 0
window 5: PCI2 IO = 1
window 6: Local Bus = 4
LAWBAR1
bit 12 - 31 = 0x00000000 - base addr

##

Table 3. LAWARn Bit Field Descriptions

Bits Name Description

0 EN 0 The local access window n (and all other LAWARn and LAWBARn fields) are disabled.
1 The local access window n is enabled and other LAWARn fields combine to identify an address

range for this window

1–7 — Write reserved, read=0

8–11 TRGT_IF Identifies the target interface ID when a transaction hits in the address range defined by this
window. Note that configuration registers and SRAM regions are mapped by the windows defined
by CCSRBAR and L2SRBAR. These mapping supersede local access window mappings. So
configuration registers and SRAM do not appear as a target for local access windows.

0000 PCI 1
0001 PCI2
0010–0011 Reserved
0100 Local bus memory controller
0100–1110 Reserved
1111 DDR SDRAM

12–25 — Write reserved, read = 0

26–31 SIZE Identifies the size of the window from the starting address. Window size is 2(size-1) bytes.
000000–001010Reserved
001011 4Kbytes
001100 8Kbytes
001101 16Kbytes
............... 2(size-1) bytes
011110 2 Gbytes
011111–111111 Reserved

Simplifying Board Bringup, Rev.1

Freescale Semiconductor 23

8555CDS_init_linux.cfg Target Initialization File

#Note: the next line writes to 0xe0000c28 since the CCSRBAR was changed from 0xFF700000 to
0xE0000000.

##

#LAWBAR1
writemem.l0xe0000c28 0x00000000
LAWAR1
bit 1 = 1 - enable window
bit 8-11 = F - DDR
bit 26 - 31 = 512M - size
writemem.l0xe0000c300x80f0001c

##

LAWBAR2
bit 12 - 31 = 0x80000000 - base addr
writemem.l0xe0000c48 0x00080000
LAWAR2
bit 1 = 1 - enable window
bit 8-11 = 0 - PCI1 MEM
bit 26 - 31 = 512M - size
writemem.l0xe0000c500x8000001c

##

LAWBAR3
bit 12 - 31 = 0xa0000000 - base addr
writemem.l0xe0000c680x000a0000
LAWAR3
bit 1 = 1 - enable window
bit 8-11 = 1 - PCI2 MEM
bit 26 - 31 = 512M - size
writemem.l0xe0000c700x8010001c

##

LAWBAR4
bit 12 - 31 = 0xe2000000 - base addr
writemem.l0xe0000c880x000e2000

LAWAR4
bit 1 = 1 - enable window
bit 8-11 = 0 - PCI1 IO
bit 26 - 31 = 16M - size
writemem.l0xe0000c900x80000017

##

LAWBAR5
bit 12 - 31 = 0xe3000000 - base addr
writemem.l0xe0000ca80x000e3000
LAWAR5
bit 1 = 1 - enable window
bit 8-11 = 1 - PCI2 IO
bit 26 - 31 = 16M - size
writemem.l0xe0000cb00x80100017

##

LAWBAR6 Local Bus
bit 12 - 31 = 0xf0000000 - base addr

Simplifying Board Bringup, Rev.1

24 Freescale Semiconductor

8555CDS_init_linux.cfg Target Initialization File

writemem.l0xe0000cc80x000f0000
LAWAR6
bit 1 = 1 - enable window
bit 8-11 = 4 - Local Bus
bit 26 - 31 = 256M - size
writemem.l0xe0000cd00x8040001b

##

5.15 DDR Initialization
The DDR code must be changed to match your DDR settings. If your external DDR and DDR interface is
similar to that of the Freescale development board, some of the settings can be leveraged. However, each
hardware layout is unique and some of the values probably need to be changed. For more information, refer
to Freescale application notes AN2583 and AN2582.

###
DDR Initilization
Clocks: CPU: 792MHz, CCB: 264 MHz, DDR: 132MHz, LBC: 66MHz
configure the appropriate DDR controller registers
##
writemem.l0xe00021100x42000000
CS0_BNDS
bit 8-15 - starting address
bit 24-31 - ending address
writemem.l 0xe0002000 0x0000000f ; DDR CS0
CS0_CONFIG
writemem.l 0xe0002080 0x80000102
CS1_BNDS
bit 8-15 - starting address
bit 24-31 - ending address
writemem.l 0xe0002008 0x00000000
CS1_CONFIG
writemem.l 0xe0002084 0x00000000
#esdlwy 0x80000102
TIMING_CFG_0
#writemem.l0xe0002104 0x00260802
TIMING_CFG_1
writemem.l0xe0002108 0x36332321
TIMING_CFG_2
writemem.l0xe000210C 0x00000c00
DDR_SDRAM_MODE
writemem.l0xe0002118 0x00000022
DDR_SDRAM_INTERVAL
writemem.l0xe0002124 0x04060100
DDR_SDRAM_CLK_CNTL
writemem.l0xe0002130 0x83000000
sleep 200
enable the memory interface
DDR_SDRAM_CFG

bit 0 = 1 - MEM_EN SDRAM interface logic is disabled
writemem.l 0xe0002110 0xC2000000
#
###

Simplifying Board Bringup, Rev.1

Freescale Semiconductor 25

8555CDS_init_linux.cfg Target Initialization File

5.16 Local Bus Memory Controller Configuration
The main component of the local bus controller (LBC) is its memory controller, which provides a seamless
interface to many types of memory devices and peripherals. The memory controller controls eight memory
banks shared by a high-performance SDRAM machine, a general-purpose chip-select machine (GPCM),
and up to three user-programmable machines (UPMs). There is no restriction on how many of the eight
banks (chip selects) can be programmed to operate with any given machine. Therefore, minimal glue logic
is required to interface with synchronous DRAM (SDRAM), SRAM, EPROM, flash EPROM, burstable
RAM, regular DRAM devices, extended data 3output DRAM devices, and other peripherals. The external
address latch signal (LALE) allows multiplexing of addresses with data signals to reduce the device pin
count. The LBC also includes a number of data checking and protection features such as data parity
generation and checking, write protection and a bus monitor to ensure that each bus cycle is terminated
within a user-specified period.

When a memory transaction is dispatched to the LBC, the memory address is compared with the address
information of each bank (chip select). The corresponding machine assigned to that bank (GPCM,
SDRAM, or UPM) then takes ownership of the external signals that control the access and maintains
control until the transaction ends. Thus, with the LBC in GPCM, SDRAM, or UPM mode, only one of the
eight chip selects is active at any time during the transaction.

To configure the memory controller, change the code in Section 5.16.4, “Memory Controller
Configuration Code” to match your local bus requirements. Find out what hardware is connected to the
MPC8555 local bus. At a minimum, a flash memory device is probably connected to this interface. For
each external device, determine whether you need to use the GPCM, UPM, or SDRAM local bus
controller. Also, you need to know which chip select is connected to the external device, the base address,
the memory range, port size, and possibly some timing information. For each device, you must program
at least a base register and an options register associated with a chip select. For example, the BR0 and OR0
registers are used to program the interface associated with chip select 0.

The base registers (BRn) contain the base address and address types for each memory bank. The memory
controller uses this information to compare the address bus value with the current address accessed. Each
register (bank) includes a memory attribute and selects the machine for memory operation handling. Note
that after system reset, BR0[V] is set, BR1[V]–BR7[V] are cleared, and the value of BR0[PS] reflects the
initial port size configured by the boot ROM location pins. Refer to the chapter on the local bus controller
in the MPC8555 reference manual.

5.16.1 Base Register (BR0–BR7)

The base registers (BRn), shown in Figure 6, contain the base address and address types for each memory
bank. The memory controller uses this information to compare the address bus value with the current
address accessed. Each register (bank) includes a memory attribute and selects the machine for memory
operation handling. Note that after system reset, BR0[V] is set, BR1[V]–BR7[V] are cleared, and the value
of BR0[PS] reflects the initial port size configured by the boot ROM location pins.

Simplifying Board Bringup, Rev.1

26 Freescale Semiconductor

8555CDS_init_linux.cfg Target Initialization File

Table 4 describes the BRn fields.

Offset 0xC_5000(BR0)
0x0_5008(BR1)
0x0_5010(BR2)

0x0_5018(BR3)
0x0_5020(BR4)
0x0_5028(BR5)

0x0_5030(BR6)
0x0_5038(BR7)

Access: Read/Write

 0 16 17 18 19 20 21 22 23 24 26 27 28 29 30 31

R
BA — PS DECC WP MSEL — ATOM — V

W

Reset 0 P S 0 0 0 0 0 0 0 0 0 01

1 BR0 has its valid bit set during reset. Thus bank 0 is valid with the port size (PS) configured from external boot ROM
configuration pins during reset. All other base registers have all bits cleared to zero during rest.

Figure 6. Base Registers (BR0-BR7)

Table 4. LAWARn Bit Field Descriptions

Bits Name Description

0–16 BA Base address. The upper 17 bits of each register are compared to the address on the address
bus to determine if the bus master is accessing a memory bank controlled by the memory
controller. Used with the address mask bits ORn[AM]

17–18 — Reserved

19–20 PS Port Size. Specifies the port size of this memory region. For BR0, PS is configured from the boot
ROM location pins during reset. For all other banks the value is reset to 00 (port size not defined).
00 Reserved
01 8-bit
10 16-bit
11 32-bit

21–22 DECC Specifies the method for data error checking
00 Data error checking disabled, but normal parity generation.
01 Normal parity generation and checking.
10 Read-modify-write parity generation and normal parity checking (32-bit port size only)
11 Reserved

23 WP Write protect

0 Read and write accesses are allowed
1 Only read accesses are allowed. The memory controller does not assert LCSn on write cycle to

this memory bank. WP is set (if enabled) if a write to this memory bank is attempted and a local
bus error interrupt is generated (if enabled), terminating the cycle.

Simplifying Board Bringup, Rev.1

Freescale Semiconductor 27

8555CDS_init_linux.cfg Target Initialization File

5.16.2 Option Registers (ORn)–GPCM Mode
The ORn registers define the sizes of memory banks and access attributes. The ORn attribute bits support
the following three modes of operation as defined by BRn[MSEL].

• GPCM mode

• UPM mode

• SDRAM mode

The ORn registers are interpreted according to which of the three machine types is selected for that bank.
The address mask fields of the option registers (ORn[XAM, AM]) mask up to 19 corresponding
BRn[BA,XBA] fields. The 15 lsbs of the 34-bit internal address do not participate in bank address
matching in selecting a bank for access. Masking address bits independently allows external devices of
different size address ranges to be used. Address mask bits can be set or cleared in any order in the field,
allowing a resource to reside in more than one area of the address map. Table 5 shows the address mask
for each memory bank size from 256 Kbytes to 4 Gbytes. The OR register description follows this table.

24–26 MSEL Machine select. Specifies the machine to use for handling memory operations.

000 GPCM (reset value)
001 Reserved
010 Reserved
011 SDRAM
100 UPMA
101 UPMB
110 UPMC
111 Reserved

27 — Reserved

28–29 ATOM Atomic operation. Writes (reads) to the address space handled by the memory controller bank
reserve the selected memory bank for the exclusive use of the accessing device. The reservation
is release d when the device performs a read (write) operation to this memory controller bank. If
a subsequent read (write) request to this memory controller bank is not detected within 256 bus
clock cycles of the last write (read), the reservation is released and an atomic error is reported (if
enabled).
00 The address space controlled by this bank is not used for atomic operation
01 Read-after-write-atomic (RAWA)
10 Write-after-read-atomic (WARA)
11 Reserved

30 — Reserved

31 V Valid bit. Indicates that the contents of the BRn and ORn pair are valid. LCSn does not assert
unless V is set (an access to a region that has no valid bit set may cause a bus time-out). After
system reset, only BR0[V] is set.

0 This bank is invalid.
1 This bank is valid.

Table 4. LAWARn Bit Field Descriptions (continued)

Bits Name Description

Simplifying Board Bringup, Rev.1

28 Freescale Semiconductor

8555CDS_init_linux.cfg Target Initialization File

Figure 7 shows the bit fields for ORn when the corresponding BRn[MSEL] selects the GPCM machine.

Table 5. Memory Sizes Bank Sizes in Relation to Address Mask

Bits 17–18 AM Memory Bank SIze

11 0000_0000_0000_0000_0 4 Gbytes

11 1000_0000_0000_0000_0 2 Gbytes

11 1100_0000_0000_0000_0 1 Gbytes

11 1110_0000_0000_0000_0 512 Mbytes

11 1111_0000_0000_0000_0 256 Mbytes

11 1111_1000_0000_0000_0 128 Mbytes

11 1111_1100_0000_0000_0 64 Mbytes

11 1111_1110_0000_0000_0 32 Mbytes

11 1111_1111_0000_0000_0 16 Mbytes

11 1111_1111_1000_0000_0 8 Mbytes

11 1111_1111_1100_0000_0 4 Mbytes

11 1111_1111_1110_0000_0 2 Mbytes

11 1111_1111_1111_0000_0 1 Mbytes

11 1111_1111_1111_1000_0 512 Kbytes

11 1111_1111_1111_1100_0 256 Kbytes

11 1111_1111_1111_1110_0 128 Kbytes

11 1111_1111_1111_1111_0 64 Kbytes

11 1111_1111_1111_1111_1 32 Kbytes

Offset 0xC_5004(OR0)
0x0_500C(OR1)

0x0_5014(OR2)
0x0_501C(OR3)
0x0_5024(OR4)

0x0_502C(OR5)
0x0_5034(OR6)
0x0_503C(OR7)

Access: Read/Write

 0 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
AM — BCTLD CSNT ACS XACS SCY SETA TRLX EHTR EAD

W

Reset 0 1 1 1 1 1 1 1 1 0 1 1 11

Reset All zeros
1 OR0 has this value set during reset (GPCM is the default control machine for all banks coming out of reset). All other option

registers have all bits cleared.

Figure 7. Option Registers (ORn) – GPCM Mode

Simplifying Board Bringup, Rev.1

Freescale Semiconductor 29

8555CDS_init_linux.cfg Target Initialization File

Table 6 describes the ORn fields for GPCM mode.

Table 6. ORn—GPCM Bit Field Descriptions

Bits Name Description

0–16 AM GPCM address mask. Masks corresponding BRn bits. Masking address bits independently
allows external devices of different size address ranges to be used. Address mask bits can be
set or cleared in any order in the field, allowing a resource to reside in more than one area of
the address map.
0 Corresponding address bits are masked.
1 Corresponding address bits are used in the comparison between base and transaction

address.

17–18 — Reserved

19 BCTLD Buffer control disable. Disables assertion of LBCTL during access to the current memory bank.
0 LBCTL is asserted upon access to the current memory bank.
1 LBCTL is not asserted upon access to the current memory bank.

20 CSNT Chip select negation time. Determines when LCSn and LWE are negated during an external
memory write access handled by the GPCM, provided that ACS ≠ 00 (when ACS = 00, only
LWE is affected by the setting of CSNT). This helps meet address/data hold times for slow
memories and peripherals.
0 LCSn and LWE are negated normally.
1 LCSn and LWE are negated earlier depending on the value of LCCR[CLKDIV]

21–22 ACS Address to chip-select setup. Determines the delay of the LCSn assertion relative to the
address change when the external memory access is handled by the GPCM. At system reset,
OR0[ACS] = 11.

LCRR[CLKDIV] CSNT Meaning

x 0 LCSn and LWE are negated normally

2 1 LCSn and LWE are negated normally

4 or 8 1 LCSn and LWE are negated quarter of a
bus clock cycle earlier.

LCRR[CLKDIV] CSNT Meaning

x 00 LCSn is output at the same time as the address lines. Note
that this overrides the value of CSNT such that CSNT = 0

01 Reserved

2 10 LCSn is output a half bus clock cycle after the address lines.

11 LCSn is output a half bus clock cycle after the address lines.

4 or 8 10 LCSn is output a quarter bus clock cycle after the address
lines

LCSn is output a half bus clock cycle after the address lines

Simplifying Board Bringup, Rev.1

30 Freescale Semiconductor

8555CDS_init_linux.cfg Target Initialization File

In this example, flash memory and SDRAM are connected to CS0, SC1, and CS2. Other chip selects are
used as well:

• 16-bit 8 Mbyte flash connected to CS0, which needs the GPCM controller

23 XACS Extra address to chip-select setup. Setting this bit increases the delay of the LCSn assertion
relative to the address change when the external memory access is handled by the GPCM.
After a system reset, OR0[XACS] =1.
0 Address to chip-select setup is determined by ORx[ACS] and LCRR[CLKDIV]
1 Address to chip-select setup is extended (see Table and Table for LCRR[CLKDIV] = 4 or 8,

Table and Table for LCRR[CLKDIV] =2)

24–27 SCY Cycle length in bus clocks. Determines the number of wait states inserted in the bus cycle,
when the GPCM handles the external memory access. Thus it is the main parameter for
determining cycle length. The total cycle length depends on other timing attributes settings.
After a system reset, OR0[SCY] = 1111

0000 No wait states
0001 1 bus clock cycle wait state
...
1111 15 bus clock cycle wait states

28 SETA External address termination
0 Access is terminated internally by the memory controller unless the external device asserts

LGTA earlier to terminate the access.
1 Access is terminated externally by asserting the LGTA external pin. (Only LGTA can

terminate the access)

29 TRLX Timing relaxed. Modifies the settings of timing parameters for slow memories or peripherals.

0 Normal timing is generated by the GPCM.
1 Relaxed timing on the following parameters:
 • Adds an additional cycle between the address and control signals (only if ACS ≠ 00)
 • Doubles the number of wait states specified by SCY, providing up to 30 wait states.
 • works in conjunction with EHTR to extend hold time on read accesses.
 • LCSn (only if ACS ≠ 00) and LWE signals are negated one cycle earlier during writes.

30 EHTR Extended hold time on read accesses. Indicates with TRLX how many cycles are inserted
between a read access from the current bank and the next access.

31 EAD External address latch delay. Allow extra bus clock cycles when using external address latch
(LALE).
0 No additional bus clock cycles (LALE asserted for one bus clock cycles only)
1 Extra bus clock cycles are added (LALE is asserted for the number of bus clock cycles

specified by LCRR[EADC]).

Table 6. ORn—GPCM Bit Field Descriptions (continued)

Bits Name Description

TRLX EHTR Meaning

0 0 The memory controller generates normal
timing. No additional cycles are inserted.

0 1 1 idle clock cycle is inserted

1 0 4 idle clock cycles are inserted

1 1 8 idle clock cycles are inserted.

Simplifying Board Bringup, Rev.1

Freescale Semiconductor 31

8555CDS_init_linux.cfg Target Initialization File

• 16 bit 8 Mbyte flash connected to CS1, which needs the GPCM controller

• SDRAM connected to CS2, which needs the SDRAM controller

Create a list of all devices connected to local bus interface and the associated properties. For simplicity,
just program the interface for the flash memory, which should be connected to CS0 at a minimum. Program
the correct values into CS0 and BR0 and then comment out the remaining configurations of BR1/CS1,
BR2/CS2, BR3/CS3, and BR7/CS7.

Two other registers that must be programmed are LBCR (see Table 7) and LCRR. In this example, most
of the default values are used.

5.16.3 Clock Ratio Register
The clock ratio register sets the system (CCB) clock to the LBC bus frequency ratio. It also provides
configuration bits for extra delay cycles for address and control signals.

Table 8 describes the LCRR fields

Table 7. LBCR

Bits Name Description

16–23 BMT Bus monitor timing. Defines the bus monitor time-out period. Clearing BMT (reset value) selects
the maximum count of 2048 bus clock cycles. For non-zero values of BMT, the number of LCLK
clock cycles to count down before a time-out error is generated is given by: bus cycles = BMTx8.
Apart from BMT = 0x00, the minimum value of BMT is 5, corresponding with 40 bus cycles.
Shorter time-out may result in spurious errors during SDRAM operation.

24–31 — Reserved

Offset 0x0_50D4 Access: Read/Write

 0 1 2 3 4 5 6 7 8 13 14 15 16 27 28 31

R
DBYP — BUFCMDC — ECL — EADC — CLKDIV

W

Reset 1 0 1 0 0 0

Figure 5-8. Clock Ratio Register (LCRR)

Table 8. LCRR

Bits Name Description

0 DBYP DLL bypass. Set when using low bus clock frequencies if the DLL cannot lock. In DLL bypass
mode, incoming data is captured in the middle of the bus clock cycle.
0 The DLL is enabled.
1 The DLL is bypassed.

1 — Reserved

2–3 BUFCMDC Additional delay cycles for SDRAM control signals. Defines the number of cycles to be added for
each SDRAM command when LSDMR[BUFCMD] = 1
00 4
01 1
10 2
11 3

Simplifying Board Bringup, Rev.1

32 Freescale Semiconductor

8555CDS_init_linux.cfg Target Initialization File

5.16.4 Memory Controller Configuration Code
To configure the memory controller, change the code presented in this section to match your local bus
requirements.

##
configure local bus memory controller
##

CS0 - Flash Bank #0
writemem.l 0xe0005000 0xFF801001 # BR0 base address at 0xFF800000, port size 16 bit, GPCM, valid
writemem.l 0xe0005004 0xFF806E61 # OR0 8 Mbyte flash size

###
CS1 - Flash Bank #1
writemem.l 0xe0005008 0xFF001001 # BR1 base address at 0xFF000000, port size 16 bit, GPCM, valid
writemem.l 0xe000500C 0xFF806E61 # OR1 8MB flash size

###
CS2 - Local SDRAM
writemem.l 0xe0005010 0xf0001861 # BR2
writemem.l 0xe0005014 0xfc006901 # OR2

##

CS3 - CADMUS
writemem.l 0xe0005018 0xF8000801 # BR3 base address at 0xF8000000
writemem.l 0xe000501C 0xFF000FF7 # OR3 16 Mbyte
##

4–5 — Reserved

6–7 ECL Extended CAS latency. Determines the extended CAS latency for SDRAM accesses when
LSDMR[CL] = 0

8–13 — Reserved

14–15 EADC External address delay cycles. Defines the number of cycles for the assertion of LALE. Note that
LALE negates prior to the end of the final local bus clock as controlled by LBCR[AHD]
00 4
01 1
10 2
11 3

16–27 — Reserved

28–31 CLKDIV System (CCB) clock divider. Sets the frequency ratio between the system (CCB) clock and the
memory bus clock. Only the values shown in the table below are allowed.
0000–0001 Reserved
0010 2
0011 Reserved
0100 4
0101–0111 Reserved
1000 8
1001–1111 Reserved

Table 8. LCRR (continued)

Bits Name Description

Simplifying Board Bringup, Rev.1

Freescale Semiconductor 33

8555CDS_init_linux.cfg Target Initialization File

writemem.l 0xe0005038 0xf9001801 # BR7
writemem.l 0xe000503C 0xfff00ff7 # OR7

CS7

##

##

the following line enables the local bus and uses the default values.
writemem.l 0xe00050d0 0x00000000 LBCR (configuration register)

##

##

the next line uses default values except for EADC (3 delay cycles) and for CLKDIV (divide by
4). These values should work for most flash memory devices as they give more margin for timing.

writemem.l 0xe00050d4 0x80030004 # LCRR

##

##

#The next 16 lines of code are for the SDRAM, which is on the local bus. However this section
#of code should be commented out because we want to configure only flash memory on the board.

writemem.l 0xe00050a4 0x20000000 # LSRT
writemem.l 0xe0005094 0x0063b723 # LSDMR
writemem.l 0xe0005094 0x2863b723 # LSDMR - init sdram sequence
writemem.l 0xC0000000 0x000000ff #
writemem.l 0xe0005094 0x0863b723 #
writemem.l 0xC0000000 0x000000ff #
writemem.l 0xC0000000 0x000000ff #
writemem.l 0xC0000000 0x000000ff #
writemem.l 0xC0000000 0x000000ff #
writemem.l 0xC0000000 0x000000ff #
writemem.l 0xC0000000 0x000000ff #
writemem.l 0xC0000000 0x000000ff #
writemem.l 0xC0000000 0x000000ff #
writemem.l 0xe0005094 0x1863B723 #
writemem.l 0xC00000cc 0x000000ff #
writemem.l 0xe0005094 0x4063B723 #

##

5.17 Set up Interrupt Handlers in DDR
Interrupt processing begins with an exception that occurs due to external conditions, errors, or program
execution problems. When the exception occurs, the processor checks to verify that interrupt processing
is enabled for that exception. If it is enabled, the interrupt causes the state of the processor to be saved in
the appropriate registers, and it prepares to start executing the interrupt handler (interrupt service routine)
at the associated vector address for that exception. When the handler is executing, the implementation may
need to check one or more bits in the exception syndrome register (ESR) or the SPEFSCR, depending on
the exception, to verify the specific cause of the exception and take appropriate action.

Each interrupt has an associated interrupt vector address obtained by concatenating the IVPR prefix value
with the address offset in the associated IVOR (that is, IVPR[32–47]||IVORn[48–59]||0b0000). The

Simplifying Board Bringup, Rev.1

34 Freescale Semiconductor

8555CDS_init_linux.cfg Target Initialization File

resulting address is that of the instruction to execute when that interrupt occurs. IVPR and IVOR values
are indeterminate on reset and the system software uses mtspr to initialize them.

In our target initialization file, the interrupt vectors are at the top of DDR memory (that is, 0x00000000).
To place the interrupt vectors at another base address, write to bits 32–47 of the IVPR. The offset registers
(IVOR[0–35]) are standard and do not need to be changed.

If an exception occurs during board bringup, the processor jumps to the interrupt handler and there should
at least be an infinite loop at each interrupt handler, which is accomplished by writing the value
0x4800_0000 at the address of each interrupt handler. Otherwise, the processor enters an unknown state.
If the infinite loops are present and an exception occurs, the code goes into an infinite loop and you can
use the CodeWarrior debugger to determine the source of the exception.

In our configuration file the value of 0x4800_0000 is written only to 0x00000700 and 0x00001500.
However, we recommend that you write it to all interrupt vectors. There are 18 interrupt handlers to set up
by writing 0x4800_0000 to all interrupt handler locations (0x0000_0100, 0x0000_0200, and so on).

5.17.1 Interrupt Vector Prefix Register (IVPR)

5.17.2 Interrupt Vector Offset Register (IVORn)

###
interrupt vector initialization; interrupt vectors in DDR
###

writereg IVPR 0x00000000 # IVPR (default reset value)

Offset Access: Read/Write

 32 47 48 63

R
Interrupt vector prefix —

W

Reset All zeros

SPR SPR 63

Figure 9. Interrupt Vector Prefix Register (IVPR)

Offset Access: Read/Write

 32 47 48 59 60 63

R
— Interrupt vector —

W

Reset All zeros

SPR

Figure 10. Interrupt Vector Offset Registers (IVORn)

5.17.3 Interrupt Vector Initialization Code
The code in this section shows 18 IVORn values. Any exception within the processor is mapped to a
unique IVOR and therefore to a unique interrupt handler.

Simplifying Board Bringup, Rev.1

Freescale Semiconductor 35

8555CDS_init_linux.cfg Target Initialization File

interrupt vector offset registers
writespr 400 0x00000100# IVOR0 - critical input
writespr 401 0x00000200# IVOR1 - machine check
writespr 402 0x00000300# IVOR2 - data storage
writespr 403 0x00000400# IVOR3 - instruction storage
writespr 404 0x00000500# IVOR4 - external input
writespr 405 0x00000600# IVOR5 - alignment
writespr 406 0x00000700# IVOR6 - program
writespr 408 0x00000c00# IVOR8 - system call
writespr 410 0x00000900# IVOR10 - decrementer
writespr 411 0x00000f00# IVOR11 - fixed-interval timer interrupt
writespr 412 0x00000b00# IVOR12 - watchdog timer interrupt
writespr 413 0x00001100# IVOR13 - data TLB error
writespr 414 0x00001000# IVOR14 - instruction TLB error
writespr 415 0x00001500# IVOR15 - debug
writespr 528 0x00001600# IVOR32 - SPE-APU unavailable
writespr 529 0x00001700# IVOR33 - SPE-floating point data exception
writespr 530 0x00001800# IVOR34 - SPE-floating point round exception

writespr 531 0x00001900# IVOR35 - performance monitor
put a valid opcode at debug and program exception vector address
Write “0x4800_0000”to all interrupt handler locations (0x0000_0100, #0x0000_0200,…). In this
configuration file “0x4800_0000” is only written to #0x00000700 and 0x00001500 however we
suggest to write it to all interrupt vectors.

writemem.l 0x00000700 0x48000000
writemem.l 0x00001500 0x48000000
#

5.18 Activate Debug Interrupt and Enable SPU
The following lines ensure that the debug interrupt and SPU are enabled.

###
activate debug interrupt and enable SPU
###
#
writereg MSR 0x02000200
#
###

5.19 Set Up L1 Cache
Our target initialization file enables the L1 cache. However, it is easier to bring up a board with caches
disabled. Therefore, we recommend omitting the next two lines by commenting them so that the L1 cache
remains disabled.

###
enable L1 cache
###
#

It is easier to bring up a board with the caches disabled. We recommend omitting the next two
lines by adding a # before them.

enable data cache
writespr 1010 0x00000001 # L1CSR0

Simplifying Board Bringup, Rev.1

36 Freescale Semiconductor

8555CDS_init_linux.cfg Target Initialization File

enable instruction cache
writespr 1011 0x00000001 # L1CSR1
#

###

5.20 Time Base Enable
CodeWarrior uses the time base, so it must be enabled.

###
time base enable
###
#
writespr 1008 0x00004000 # HID0
#
##

5.21 UART Configuration
The following code configures UART0: receive data interrupt enabled, character length set to 8 bits,
divisor set to 90, RTS asserted, transmitter/receiver FIFO cleared, and
transmitter/receiver enabled.

###
the serial configuration UART
enable received data available interrupt
##
writemem.b 0xe0004501 0x01
writemem.b 0xe0004503 0x83
writemem.b 0xe0004500 0x90
writemem.b 0xe0004501 0x00
writemem.b 0xe0004503 0x03
writemem.b 0xe0004504 0x03
writemem.b 0xe0004502 0x07
sleep 0x1000
##

5.22 CodeWarrior Debugger Configuration
This section enables the trap debug event and sets the program counter and stack pointer.

###
CodeWarrior debugger settings.
###
#
#Trap debug event enable
writereg DBCR0 0x41000000

set the PC at the reset address (for debug-->connect)
writereg PC 0xfffffffc
for debugging starting at program entry point when stack is not initialized
writereg SP 0x0000000F
#
###

Simplifying Board Bringup, Rev.1

Freescale Semiconductor 37

Conclusion

6 Conclusion
Section 4, “Flow of Target Initialization File familiarizes you with the overall flow of the target
initialization file. Section 3, “Syntax and Command Set,” examines the syntax and command sets of the
target initialization file. Section 5, “8555CDS_init_linux.cfg Target Initialization File analyzes each
section of this file, identifying the sections to modify for your application. At this point, you should be able
to modify the CodeWarrior target initialization file to configure the following modules:

• L1 Instruction and Data cache

• L2 cache/SRAM

• Memory map through local access windows (LAWs)

• Memory management unit (MMU: TLBs)

• Flash memory devices connected to the local bus

• DDR memory controller

• Exception handlers in DDR

7 Revision History
Table 9 presents a revision history of this document.

Table 9. Revision History for AN3366

Revision Date Description of Changes

1 5/2007 Page 14. First two bullets on that page are corrected. The first bullet is changed from TLB0
to TLB1, with the same description. The second bullet is changed to from TLB1 to TLB0,
with the same description.

0 4/2007 Initial release.

Simplifying Board Bringup, Rev.1

38 Freescale Semiconductor

Revision History

THIS PAGE INTENTIONALLY LEFT BLANK

Simplifying Board Bringup, Rev.1

Freescale Semiconductor 39

Revision History

THIS PAGE INTENTIONALLY LEFT BLANK

Document Number: AN3366
Rev.1
05/2007

Information in this document is provided solely to enable system and software

implementers to use Freescale Semiconductor products. There are no express or

implied copyright licenses granted hereunder to design or fabricate any integrated

circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to

any products herein. Freescale Semiconductor makes no warranty, representation or

guarantee regarding the suitability of its products for any particular purpose, nor does

Freescale Semiconductor assume any liability arising out of the application or use of

any product or circuit, and specifically disclaims any and all liability, including without

limitation consequential or incidental damages. “Typical” parameters which may be

provided in Freescale Semiconductor data sheets and/or specifications can and do

vary in different applications and actual performance may vary over time. All operating

parameters, including “Typicals” must be validated for each customer application by

customer’s technical experts. Freescale Semiconductor does not convey any license

under its patent rights nor the rights of others. Freescale Semiconductor products are

not designed, intended, or authorized for use as components in systems intended for

surgical implant into the body, or other applications intended to support or sustain life,

or for any other application in which the failure of the Freescale Semiconductor product

could create a situation where personal injury or death may occur. Should Buyer

purchase or use Freescale Semiconductor products for any such unintended or

unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor

and its officers, employees, subsidiaries, affiliates, and distributors harmless against all

claims, costs, damages, and expenses, and reasonable attorney fees arising out of,

directly or indirectly, any claim of personal injury or death associated with such

unintended or unauthorized use, even if such claim alleges that Freescale

Semiconductor was negligent regarding the design or manufacture of the part.

How to Reach Us:

Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
+1-800-521-6274 or
+1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku
Tokyo 153-0064
Japan
0120 191014 or
+81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor

Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
+1-800 441-2447 or
+1-303-675-2140
Fax: +1-303-675-2150
LDCForFreescaleSemiconductor

@hibbertgroup.com

Freescale™, the Freescale logo, and PowerQUICC are trademarks of Freescale
Semiconductor, Inc. CodeWarrior is a trademark or registered trademark of Freescale
Semiconductor, Inc. in the United States and/or other countries. The Power
Architecture and Power.org word marks and the Power and Power.org logos and
related marks are trademarks and service marks licensed by Power.org. All other
product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc., 2007. All rights reserved.

	1 Initialization File Use Cases
	2 Enable the Target Initialization File
	2.1 CodeWarrior EPPC Target Settings Panel
	2.2 CodeWarrior Flash Programmer Settings Panel

	3 Syntax and Command Set
	4 Flow of Target Initialization File
	5 8555CDS_init_linux.cfg Target Initialization File
	5.1 Header
	5.2 Delay Loop
	5.3 Invalidate BR0
	5.4 Disable L2 ECC
	5.5 Configure Internal SRAM for the Default
	5.6 Activate Debug Interrupt and Enable SPU
	5.7 Invalidate and Disable L1 Instruction and Data Cache
	5.8 Set Up Memory Map (MMU TLBs)
	5.9 Move CCSRBAR
	5.10 Configure the Boot Page Translation Register
	5.11 Workaround for DLL Stabilization
	5.12 Workaround for Local Bus DLL
	5.13 Disable Internal SRAM
	5.14 Local Access Window Configuration
	5.14.1 Local Access Window n Base Address Registers (LAWBAR[0-7])
	5.14.2 Local Access Window n Attributes Registers
	5.15 DDR Initialization
	5.16 Local Bus Memory Controller Configuration
	5.16.1 Base Register (BR0-BR7)
	5.16.2 Option Registers (ORn)-GPCM Mode
	5.16.3 Clock Ratio Register
	5.16.4 Memory Controller Configuration Code
	5.17 Set up Interrupt Handlers in DDR
	5.17.1 Interrupt Vector Prefix Register (IVPR)
	5.17.2 Interrupt Vector Offset Register (IVORn)
	5.17.3 Interrupt Vector Initialization Code
	5.18 Activate Debug Interrupt and Enable SPU
	5.19 Set Up L1 Cache
	5.20 Time Base Enable
	5.21 UART Configuration
	5.22 CodeWarrior Debugger Configuration

	6 Conclusion
	7 Revision History

